I Lock Freedom

Chris Rossbach and Calvin Lin
cs380p

IOutIine

Agenda
* Non-blocking Synchronization

Acknowledgements:
* https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
* http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-and.htm/

I Non-Blocking Synchronization

I Non-Blocking Synchronization

Locks: a litany of problems

I Non-Blocking Synchronization

Locks: a litany of problems
Deadlock

I Non-Blocking Synchronization

Locks: a litany of problems
Deadlock
Priority inversion

I Non-Blocking Synchronization

Locks: a litany of problems
Deadlock

Priority inversion

Convoys

I Non-Blocking Synchronization

Locks: a litany of problems
Deadlock

Priority inversion

Convoys

Fault Isolation

I Non-Blocking Synchronization

Locks: a litany of problems
Deadlock

Priority inversion

Convoys

Fault Isolation

Preemption Tolerance

I Non-Blocking Synchronization

Locks: a litany of problems
Deadlock

Priority inversion

Convoys

Fault Isolation

Preemption Tolerance
Performance

I Non-Blocking Synchronization

Locks: a litany of problems
Deadlock

Priority inversion

Convoys

Fault Isolation

Preemption Tolerance
Performance

Solution: don’t use locks

I Non-Blocking Synchronization

Locks: a litany of problems
Deadlock

Priority inversion

Convoys

Fault Isolation

Preemption Tolerance
Performance

I Lock-free programming

I Lock-free programming

Subset of a broader class: Non-blocking Synchronization

I Lock-free programming

Subset of a broader class: Non-blocking Synchronization
Thread-safe access shared mutable state without mutual
exclusion

I Lock-free programming

Subset of a broader class: Non-blocking Synchronization
Thread-safe access shared mutable state without mutual
exclusion

Possible without HW support

e.g. Lamport’s Concurrent Buffer
...but not really practical wo HW

I Lock-free programming

Subset of a broader class: Non-blocking Synchronization
Thread-safe access shared mutable state without mutual
exclusion

Possible without HW support

e.g. Lamport’s Concurrent Buffer
...but not really practical wo HW

Built on atomic instructions like CAS + clever algorithmic tricks

I Lock-free programming

Subset of a broader class: Non-blocking Synchronization
Thread-safe access shared mutable state without mutual
exclusion

Possible without HW support
e.g. Lamport’s Concurrent Buffer
...but not really practical wo HW

Built on atomic instructions like CAS + clever algorithmic tricks
Lock-free algorithms are hard, so

I Lock-free programming

Subset of a broader class: Non-blocking Synchronization
Thread-safe access shared mutable state without mutual
exclusion

Possible without HW support
e.g. Lamport’s Concurrent Buffer
...but not really practical wo HW

Built on atomic instructions like CAS + clever algorithmic tricks
Lock-free algorithms are hard, so
General approach: encapsulate lock-free algorithms in data

structures
Queue, list, hash-table, skip list, etc.
New LF data structure = research result

| Basic List Append

| Basic List Append

struct Node

{
int data;

struct Node *next;

};

| Basic List Append

vold append(Node** head ref, int new data) {

Node* new node = mknode(new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
return;
}
while (last=>next !'= NULL)
last = last=>next;
last=>next = new node;

struct Node

{
int data;
struct Node *next;

};

| Basic List Append

vold append(Node** head ref, int new data) {
Node* new node = mknode(new data, head ref);

if (*head ref == NULL)

*head ref = new node;

return;

}

while (last=>next !'= NULL)

last = last=>next;
last=>next = new node;

}

* |s this thread safe?

struct Node

{
int data;
struct Node *next;

};

| Basic List Append

vold append(Node** head ref, int new data) {
Node* new node = mknode(new data, head ref);

if (*head ref == NULL)

*head ref = new node;

return;

}

while (last=>next !'= NULL)

last = last=>next;
last=>next = new node;

}

* Is this thread safe?
 What can go wrong?

struct Node

{
int data;
struct Node *next;

};

struct Node

{
int data;
struct Node *next;

|Example: List Append

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
lock () ;
if (*head ref == NULL) {

*head ref = new node;
} else {

while (last=>next '!'= NULL)

last = last=->next;
last=>next = new node;

}
unlock () ;

struct Node

{
int data;
struct Node *next;

|Example: List Append

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=->next;
last=>next = new node;

}

< >

struct Node

{
int data;
struct Node *next;

IExampIe: List Append

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=->next;
last=>next = new node;

}

>

struct Node
{

IExampIe: List Append

int data;
struct Node *next;

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=->next;
last=>next = new node;

}

Qroperty do the locks enforce?

struct Node
{

IExampIe: List Append

int data;
struct Node *next;

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=->next;
last=>next = new node;

}

Qroperty do the locks enforce?

 What does the mutual exclusion ensure?

struct Node
{

IExampIe: List Append

struct Node *next;

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=->next;
last=>next = new node;

}

Qroperty do the locks enforce?

 What does the mutual exclusion ensure?

* Can we ensure consistent view (invariants hold) sans mutual exclusion?

struct Node
{

IExampIe: List Append

struct Node *next;

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {

*head ref = new node;
} else {

while (last=>next '!'= NULL)

last = last=->next;

last=>next = new node;

}

©roperty do the locks enforce?

* What does the mutual exclusion ensure?
* Can we ensure consistent view (invariants hold) sans mutual exclusion?

* Key insight: allow inconsistent view and fix it up algorithmically

struct Node
{

IExampIe: List Append

struct Node *next;

vold append(Node** head ref, int new data) {
Node* new node = mknode (new data);
new node->next = NULL;
while (TRUE) {
Node * last = *head ref;
if(last == NULL) {
if (cas (head ref, new node, NULL))
break;

ef);

}
while (last->next !'= NULL)

last = last->next;
if (cas(&last->next, new node, NULL))
break;

} -ual exclusion?

* Key insight: allow inconsistent view and fix it up algorithmically

IExamp\e: SP-SC Queue

next (x):
if(x == Q_size-1) return O;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
data = Q buf[t]; Q buf[h] = data;
Q_tail = next(t); Q_head = next(h);

» Single-producer single-consumer
* Why/when does this work?

IExamp\e: SP-SC Queue

next (x):
1f(x == Q_size-1) return O;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
data = Q buf[t]; Q buf[h] = data;
Q_taill = next(t); Q_head = next(h);

» Single-producer single-consumer
* Why/when does this work?

struct Node
{

ILOCk_Free StaCk iizuiitgéde *next;

};

volid push(int t) {
Node* node = new Node (t) ;
do {
node=>next = head;
} while ('cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;
I while(current) {
I if (cas (&head, current->next, current)) {
t = current=>data;
return true;

}

current = head;

}

return false;

struct Node
{

ILOCk_Free StaCk iizuiitgéde *next;

};

volid push(int t) {
Node* node = new Node (t) ;
do {
node=>next = head;
} while ('cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;
I while(current) {
I if (cas (&head, current->next, current)) {
t = current=>data;
return true;

}

current = head;

) ..
return false; ¢ Why does is it work?

struct Node
{

ILOCk_Free StaCk iizuiitgéde *next;

};

volid push(int t) {
Node* node = new Node (t) ;
do {
node=>next = head;
} while ('cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;
I while(current) {
I if (cas (&head, current->next, current)) {
t = current->data; // problem?
return true;

}

current = head;

) ..
return false; ¢ Why does is it work?

struct Node
{

ILOCk_Free StaCk iizuiitgéde *next;

};

volid push(int t) {
Node* node = new Node (t) ;
do {
node=>next = head;
} while ('cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;
I while(current) {
I if (cas (&head, current->next, current)) {
t = current->data; // problem?
return true;

}

current = head;

} . .
return false; Why does is it work?

* Does it enforce all invariants?

IABA Problem

* Thread 1 observes shared variable 2 ‘A’
* Thread 1 calculates using that value

* Thread 2 changes variable to B
 if Thread 1 wakes up now and tries to CAS, CAS fails
and Thread 1 retries
* Instead, Thread 2 changes variable back to Al
* Very bad if the variables are pointers

* Anyone see a work-around?

* Keep update count - DCAS
* Avoid re-using memory
* Multi-CAS support 2 HTM

ICorrectness: Searching a sorted list

« find(20):

ICorrectness: Searching a sorted list

* find(20):

N
s
N
8
N
B
3

ICorrectness: Searching a sorted list

* find(20):

b
I
b

8

-

F
I

ICorrectness: Searching a sorted list

* find(20):

H o0

b

find(20) -> false

IInserting an item with CAS

e insert(20):

IInserting an item with CAS

e insert(20):

20)

IInserting an item with CAS

e insert(20):

A

E

IInserting an item with CAS

e insert(20):

A

-

-

insert(20) -> true

b

E

IInserting an item with CAS

IInserting an item with CAS

e insert(20):

20)

IInserting an item with CAS

e insert(20):

IInserting an item with CAS

* insert(20): * insert(25):

I

H > 10 > 30 > T

-,

IInserting an item with CAS

e insert(20):

H

-
-

* insert(25):

R S —
> 10 i »30 =

N
i

=

-

a2

o

IInserting an item with CAS

* insert(20): * insert(25):

IInserting an item with CAS

* insert(20): * insert(25):

ISearching and finding together

 find(20)

ISearching and finding together

 find(20)

i)
P
i)
¢
i)
P
L

ISearching and finding together

 find(20)

ISearching and finding together

 find(20)

ISearching and finding together

 find(20) e insert(20) -> true

-

s @{ o)l
2

-

ISearching and finding together

e find(20) -> false e insert(20) -> true

ISearching and finding together

e find(20) -> false e insert(20) -> true

This thread saw 20 ...but this thread

succeeded in putting

was not in the set... o
itinl

* |s this a correct implementation?
e Should the programmer be surprised if this happens?

* What about more complicated mixes of operations?

ICorrectness criteria

Informally:

Look at the behavior of the data structure
* what operations are called on it
e what their results are

If behavior is indistinguishable from atomic calls to a
sequential implementation then the concurrent
implementation is correct.

ISequentiaI history

* No overlapping invocations

time

ISequentiaI history

* No overlapping invocations

time

ISequentiaI history

* No overlapping invocations

(OT)wssul T
-> true

time

10

ISequentiaI history

* No overlapping invocations

(0T)1asul :T1
-> true
(0z)masul izl
-> frue

time

10 10, 20

ISequentiaI history

* No overlapping invocations

(OT)wssul T
-> true
(0g)mosul :z1
-> frue
(ST)puly :T1
-> false

time

10 10, 20 10, 20

ISequentiaI history

* No overlapping invocations

— —

= N —

>3 5|8 = |5

@ =) = 3 o

= A = A = A

S S g |

= = time
10 10, 20 10, 20

Linearizability: concurrent behaviour should be similar
* even whenthreads can see intermediate state

* Recall: mutual exclusion precludes overlap

IConcurrent history

Allow overlapping invocations

Thread 1:

insert(10)->true

insert(20)->true

time

Thread 2:

find(20)->false

IConcurrent history

Allow overlapping invocations

insert(10)->true

insert(20)->true

Thread 1:

time

Thread 2:

Linearizability:
Is there a correct sequential history:
Same results as the concurrent one

Consistent with the timing of the
invocations/responses?

Start/end impose ordering
constraints

find(20)->false

IConcurrent history

Allow overlapping invocations

insert(10)->true

insert(20)->true

Thread 1:

time

Thread 2:

Linearizability:
Is there a correct sequential history:
Same results as the concurrent one

Consistent with the timing of the
invocations/responses?

Start/end impose ordering
constraints

find(20)->false

IConcurrent history

Allow overlapping invocations

insert(10)->true insert(20)->true
Thread 1:
time
Total Order:
Thread 2: 1. Insert(10)
Linearizability: A 2. Find(20)
Is there a correct sequential history: find(20)->false = Insert(_20) .

* Sameresults as the concurrent one °* s Con_SIStent with
Consistent with the timing of the real-time order
invocations/responses? 2, 3 overlap, but
Start/end impose ordering return order OK

constraints

IExampIe: linearizable

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false

IExamp\e: linearizable

Thread 1:

insert(10)->true insert(20)->true

N

time

Thread 2:

find(20)->false

N\

A valid sequential history:
this concurrent execution
is OK

IExampIe: not linearizable

insert(10)->true insert(10)->false

Thread 1:

time

Thread 2:

delete(10)->true

19

IExampIe: not linearizable

insert(10)->true insert(10)->false

Thread 1:

time

Thread 2:

delete(10)->true

Why is this one NOT OK?

19

IExamp\e: not linearizable

insert(10)->true insert(10)->false
Thread 1:
\ \ time
Thread 2:
de/ete(lO)->true Possible Total Orders

1. Insert(10) 1. Delete(10)
2. Delete(10) 2. Insert(10)
3. Insert(10) 3. Insert(10)

o * Both consistent with real-time

Why is this one NOT OK? order

1,2 overlap, but 3 doesn’t

IExamp\e: not linearizable

insert(10)->true insert(10)->false
Thread 1:
time
Thread 2:
de/ete(lO)->true Possible Total Orders

1. Insert(10) 1. Delete(10)

2. Delete(10) 2. Insert(10)

3. Insert(10) 3. Insert(10)
o * Both consistent with real-time

Why is this one NOT OK? order

How can things like this happen? * 1,2overlap, but 3 doesn’t

IExampIe Revisited

 find(20)

Thread 1:

> 10

> 30

Thread 2:

| Example Revisited
* find(20)

5
o

Thread 1: l

‘

o

F

Thread 2:

| Example Revisited
* find(20)

s

Thread 1: l

F

Thread 2:

| Example Revisited

 find(20)
s >0 =
Thread 1: l

Thread 2:

| Example Revisited
 find(20) e insert(20) -> true

e

Thread 1:

Thread 2: T l insert(20)->true

| Example Revisited

* find(20) s f3lse insert(20) -> true

|

A

find(20)->false

e

Thread 1:
Thread 2: T l insert(20)->true

| Example Revisited

* find(20) > false * insert(20) -> true
~
[RE—— PIE—
A valid sequential history:
@ this concurrent execution
is OK because a
linearization point exists
Thread 1: T l find(20)->false

Thread 2: A i$sert{20)->true

I Example Revisited

* find(20) > false * insert(20) -> true

Vv

10

Thread 1: T
Thread 2:

| Formal Properties

| Formal Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

IFormaI Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps

* Weaker: some forward progress guaranateed, but admits unfairness,
live-lock, etc.

| Formal Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps

* Weaker: some forward progress guaranateed, but admits unfairness,
live-lock, etc.

e Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

| Formal Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

e Same thread finichec it nneratian if threads continue taking steps

Blocking ranateed, but admits unfairness,

1. Blocking
2. Starvation-Free
Obstruction-Free
3. Obstruction-Free
Lock-Free
4. Lock-Free (LF)
Wait-Free
5. Wait-Free (WF)
6. Wait-Free Bounded (WFB)
7. Wait-Free Population Oblivious (WFPQO)

fit runs inisolation
1itention, someone finishes

IFormaI Properties

* Wait-free
* Athread finishes its own operation if it continues executing steps
» Strong: everyone eventually finishes

e Lock-free

e Snme thread finichec ites nneratinn if threads continue taking stens

Blocking

1. Blocking

2. Starvation-Free
Obstruction-Free

3. Obstruction-Free
Lock-Free

4. Lock-Free (LF)
Wait-Free

5. Wait-Free (WF)

6. Wait-Free Bounded (WFB)

7. Wait-Free Population Oblivious (WFPO)

ranai

fitr
1tent

Wait-Free

; Population }
Oblivious

I Linearizability Properties

I Linearizability Properties

* non-blocking

 one method is never forced to wait to sync
with another.

I Linearizability Properties

* non-blocking
 one method is never forced to wait to sync
with another.
. local property:

* asystem is linearizable iff each individual
object is linearizable.

* gives us composability.

I Linearizability Properties

* non-blocking
 one method is never forced to wait to sync
with another.
. local property:

* asystem is linearizable iff each individual
object is linearizable.

* gives us composability.
* Why is it important?
* Serializability is not composable.

I Linearizability Properties

* non-blocking
 one method is never forced to wait to sync
with another.
. local property:

* asystem s linearizable iff each individual
object is linearizable.

* gives us composability.
* Why is it important?
* Serializability is not composable.

Composability again!

I Practical difficulties:

* Key-value mapping

* Population count

* |teration

* Resizing the bucket array

I Practical difficulties:

* Key-v

* Pop
* |ter
* Resi

I Practical difficulties:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

I Practical difficulties:

* Key-vz Options to consider when

* Popt implementing a “difficult” operation:
* |tere Relax the semantics

e Res (e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

I Practical difficulties:

* Key-v?’ Options to consider when
* Popt implementing a “difficult” operation:
* |lterc Relax the semantics

e RS (e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

I Practical difficulties:

* Key-v?’ Options to consider when
* Popt implementing a “difficult” operation:
* |lterc Relax the semantics

e RS (e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

ISummary

Lock free data structures can be super-fast
Based on clever algorithmic tricks and HW atomics
Corner cases often hard to get right

Good tool for the toolbox, use conservatively.

I Backups...

| Formal Properties

| Formal Properties

e Wait-free

| Formal Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps

| Formal Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

| Formal Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

| Formal Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

* Lock-free
 Some thread finishes its operation if threads continue taking steps

IFormaI Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps

* Weaker: some forward progress guaranateed, but admits
unfairness, live-lock, etc.

IFormaI Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps

* Weaker: some forward progress guaranateed, but admits
unfairness, live-lock, etc.

e Obstruction-free

IFormaI Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps

* Weaker: some forward progress guaranateed, but admits
unfairness, live-lock, etc.

* Obstruction-free
* A thread finishes its own operation if it runs in isolation

| Formal Properties

e Wait-free

* A thread finishes its own operation if it continues executing steps
* Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps

* Weaker: some forward progress guaranateed, but admits
unfairness, live-lock, etc.

e Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

