
Chris Rossbach and Calvin Lin

cs380p

Lock Freedom



Outline

Agenda
• Non-blocking Synchronization

Acknowledgements:
• https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
• http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-and.html 



Non-Blocking Synchronization



Non-Blocking Synchronization

Locks: a litany of problems



Non-Blocking Synchronization

Locks: a litany of problems
Deadlock



Non-Blocking Synchronization

Locks: a litany of problems
Deadlock
Priority inversion



Non-Blocking Synchronization

Locks: a litany of problems
Deadlock
Priority inversion
Convoys



Non-Blocking Synchronization

Locks: a litany of problems
Deadlock
Priority inversion
Convoys
Fault Isolation



Non-Blocking Synchronization

Locks: a litany of problems
Deadlock
Priority inversion
Convoys
Fault Isolation
Preemption Tolerance



Non-Blocking Synchronization

Locks: a litany of problems
Deadlock
Priority inversion
Convoys
Fault Isolation
Preemption Tolerance
Performance



Non-Blocking Synchronization

Locks: a litany of problems
Deadlock
Priority inversion
Convoys
Fault Isolation
Preemption Tolerance
Performance

Solution: don’t use locks



Non-Blocking Synchronization

Locks: a litany of problems
Deadlock
Priority inversion
Convoys
Fault Isolation
Preemption Tolerance
Performance



Lock-free programming



Lock-free programming

Subset of a broader class: Non-blocking Synchronization



Lock-free programming

Subset of a broader class: Non-blocking Synchronization
Thread-safe access shared mutable state without mutual 
exclusion



Lock-free programming

Subset of a broader class: Non-blocking Synchronization
Thread-safe access shared mutable state without mutual 
exclusion
Possible without HW support

e.g. Lamport’s Concurrent Buffer
…but not really practical wo HW



Lock-free programming

Subset of a broader class: Non-blocking Synchronization
Thread-safe access shared mutable state without mutual 
exclusion
Possible without HW support

e.g. Lamport’s Concurrent Buffer
…but not really practical wo HW

Built on atomic instructions like CAS + clever algorithmic tricks



Lock-free programming

Subset of a broader class: Non-blocking Synchronization
Thread-safe access shared mutable state without mutual 
exclusion
Possible without HW support

e.g. Lamport’s Concurrent Buffer
…but not really practical wo HW

Built on atomic instructions like CAS + clever algorithmic tricks
Lock-free algorithms are hard, so



Lock-free programming

Subset of a broader class: Non-blocking Synchronization
Thread-safe access shared mutable state without mutual 
exclusion
Possible without HW support

e.g. Lamport’s Concurrent Buffer
…but not really practical wo HW

Built on atomic instructions like CAS + clever algorithmic tricks
Lock-free algorithms are hard, so
General approach: encapsulate lock-free algorithms in data 
structures

Queue, list, hash-table, skip list, etc.
New LF data structure → research result



Basic List Append



Basic List Append



Basic List Append



Basic List Append

• Is this thread safe?



Basic List Append

• Is this thread safe?

• What can go wrong?



Example: List Append



Example: List Append



Example: List Append



Example: List Append

• What property do the locks enforce?



Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?



Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?



Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically



Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically



Example: SP-SC Queue

• Single-producer single-consumer

• Why/when does this work?

next(x): 
if(x == Q_size-1) return 0;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
; ;

data = Q_buf[t]; Q_buf[h] = data;
Q_tail = next(t); Q_head = next(h);



Example: SP-SC Queue

• Single-producer single-consumer

• Why/when does this work?

next(x): 
if(x == Q_size-1) return 0;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
; ;

data = Q_buf[t]; Q_buf[h] = data;
Q_tail = next(t); Q_head = next(h);

1. Q_head is last write in Q_put, so Q_get
never gets “ahead”.

2. *single* p,c only (as advertised)
3. Requires fence before setting Q head
4. Devil in the details of “wait”
5. No lock → “optimistic”



Lock-Free Stack



Lock-Free Stack

• Why does is it work?



Lock-Free Stack

• Why does is it work?



Lock-Free Stack

• Why does is it work?

• Does it enforce all invariants?



ABA Problem

• Thread 1 observes shared variable → ‘A’ 

• Thread 1 calculates using that value

• Thread 2 changes variable to B 
• if Thread 1 wakes up now and tries to CAS, CAS fails 

and Thread 1 retries

• Instead, Thread 2 changes variable back to A! 
• Very bad if the variables are pointers

• Anyone see a work-around?

• Keep update count → DCAS
• Avoid re-using memory
• Multi-CAS support → HTM



Correctness: Searching a sorted list

• find(20):

H 10 30 T

11



Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

11



Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

11



Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

find(20) -> false

11



Inserting an item with CAS

• insert(20):

H 10 30 T

12



Inserting an item with CAS

• insert(20):

H 10 30 T

20

12



Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

12



Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20
✓

insert(20) -> true

12



Inserting an item with CAS

H 10 30 T

13



Inserting an item with CAS

• insert(20):

H 10 30 T

20

13



Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

13



Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

25

• insert(25):

13



Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

25

30 → 25

• insert(25):

13



Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

25

30 → 25

✓

• insert(25):

13



Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

25

30 → 25

✓



• insert(25):

13



Searching and finding together

• find(20)

H 10 30 T

14



Searching and finding together

• find(20)

H 10 30 T

20?

14



Searching and finding together

• find(20)

H 10 30 T

20?

14



Searching and finding together

• find(20)

H 10 30 T

20?

14



Searching and finding together

• find(20)

H 10 30 T

20

20?

• insert(20) -> true

14



Searching and finding together

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

14



Searching and finding together

• find(20) -> false • insert(20) -> true

This thread saw 20 
was not in the set...

...but this thread 
succeeded in putting 

it in!

• Is this a correct implementation?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

14



Correctness criteria

15

Informally: 

Look at the behavior of the data structure 

• what operations are called on it 

• what their results are

If behavior is indistinguishable from atomic calls to a 
sequential implementation then the concurrent 
implementation is correct.



Sequential history

time

• No overlapping invocations

16



Sequential history

time

• No overlapping invocations

16



Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

• No overlapping invocations

10

16



Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

T2
: in

sert(2
0

)

->
 t

ru
e

• No overlapping invocations

10 10, 20

16



Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

T2
: in

sert(2
0

)

->
 t

ru
e

T1
: fin

d
(1

5
)

->
 f

al
se

• No overlapping invocations

10 10, 20 10, 20

16



Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

T2
: in

sert(2
0

)

->
 t

ru
e

T1
: fin

d
(1

5
)

->
 f

al
se

• No overlapping invocations

10 10, 20 10, 20

16

Linearizability: concurrent behaviour should be similar 

• even when threads can see intermediate state

• Recall: mutual exclusion precludes overlap



Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

17



Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

17

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the 
invocations/responses?

• Start/end impose ordering 
constraints



Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

17

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the 
invocations/responses?

• Start/end impose ordering 
constraints

Why is this one OK?



Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

17

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the 
invocations/responses?

• Start/end impose ordering 
constraints

Total Order: 
1. Insert(10)
2. Find(20)
3. Insert(20)
• Is consistent with 

real-time order
• 2, 3 overlap, but 

return order OK

Why is this one OK?



Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

18



Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
A valid sequential history: 
this concurrent execution 

is OK

18



Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

19



Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

19

Why is this one NOT OK?



Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

19

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time 

order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)



Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

19

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time 

order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

How can things like this happen?



Example Revisited

• find(20)

H 10 30 T

Thread 2:

Thread 1:



Example Revisited

• find(20)

H 10 30 T

20?

Thread 2:

Thread 1:



Example Revisited

• find(20)

H 10 30 T

20?

Thread 2:

Thread 1:



Example Revisited

• find(20)

H 10 30 T

20?

Thread 2:

Thread 1:



Example Revisited

• find(20)

H 10 30 T

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true



Example Revisited

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false



Example Revisited

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history: 
this concurrent execution 

is OK because a 
linearization point exists



Example Revisited

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history: 
this concurrent execution 

is OK because a 
linearization point exists

Recurring Techniques:

• For updates
• Perform an essential step of an 

operation by a single atomic 
instruction

• E.g. CAS to insert an item into a list
• This forms a “linearization point”

• For reads
• Identify a point during the operation’s 

execution when the result is valid 
• Not always a specific instruction



Formal Properties



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, 
live-lock, etc.



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, 
live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, 
live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes

Blocking

1. Blocking

2. Starvation-Free

Obstruction-Free

3. Obstruction-Free

Lock-Free

4. Lock-Free (LF)

Wait-Free

5. Wait-Free (WF)

6. Wait-Free Bounded (WFB)

7. Wait-Free Population Oblivious (WFPO)

s
t
r
o
n
g
e
r



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, 
live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes

Blocking

1. Blocking

2. Starvation-Free

Obstruction-Free

3. Obstruction-Free

Lock-Free

4. Lock-Free (LF)

Wait-Free

5. Wait-Free (WF)

6. Wait-Free Bounded (WFB)

7. Wait-Free Population Oblivious (WFPO)

s
t
r
o
n
g
e
r



Linearizability Properties

22



• non-blocking
• one method is never forced to wait to sync 

with another.

Linearizability Properties

22



• non-blocking
• one method is never forced to wait to sync 

with another.

• local property: 
• a system is linearizable iff each individual 

object is linearizable. 

• gives us composability.

•

Linearizability Properties

22



• non-blocking
• one method is never forced to wait to sync 

with another.

• local property: 
• a system is linearizable iff each individual 

object is linearizable. 

• gives us composability.

• Why is it important? 
• Serializability is not composable. 

Linearizability Properties

22



• non-blocking
• one method is never forced to wait to sync 

with another.

• local property: 
• a system is linearizable iff each individual 

object is linearizable. 

• gives us composability.

• Why is it important? 
• Serializability is not composable. 

Linearizability Properties

22
Composability again!



Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

23



Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when 
implementing a “difficult” operation:

23



Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when 
implementing a “difficult” operation:

Relax the semantics 
(e.g., non-exact count, or non-linearizable count)

23



Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when 
implementing a “difficult” operation:

Relax the semantics 
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

23



Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when 
implementing a “difficult” operation:

Relax the semantics 
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

23



Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when 
implementing a “difficult” operation:

Relax the semantics 
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

23



Summary

Lock free data structures can be super-fast

Based on clever algorithmic tricks and HW atomics

Corner cases often hard to get right

Good tool for the toolbox, use conservatively. 



Backups…



Formal Properties



Formal Properties

• Wait-free



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits 
unfairness, live-lock, etc.



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits 
unfairness, live-lock, etc.

• Obstruction-free



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits 
unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits 
unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes


