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Race Detection

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Use locks!
• But automate bug-finding!
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1 Lock(lock);

2 Read-Write(X);

3 Unlock(lock);

1

2 Read-Write(X);

3

• Is there a race here?
• What is a race?
• Informally: accesses with missing/incorrect synchronization
• Formally: 

• >1 threads access same item
• No intervening synchronization
• At least one access is a write

How to detect races: 
forall(X) {

if(not_synchronized(X)) 
declare_race()

}
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Races

1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2  
3  read-write(X);
4  
5 }

Is there a race here?
How can a race detector tell?

Unsynchronized access can be

• Benign due to fork/join

• Benign due to view serializability

• Benign due to application-level constraints

• E.g. approximate stats counters



Detecting Races

• Static
• Run a tool that analyses just code

• Maybe code is annotated to help

• Conservative: may detect races that never occur

• Dynamic
• Instrument code

• Check synchronization invariants on accesses

• More precise

• Difficult to make fast

• Lockset vs happens-before

How to detect races: 
forall(X) {

if(not_synchronized(X)) 
declare_race()

}

1 Lock(lock);

2 Read-Write(X);

3 Unlock(lock);

1

2 Read-Write(X);

3
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Static Data Race Detection
• Type-based analysis 

• Language type system augmented 
• express common synchronization relationships: 
• correct typing→no data races

• Difficult to do (although…cf. Rust)
• Often restricts the type of synchronization primitives

• Language features
• e.g., use of monitors
• Only works for static data – not dynamic data

• Model Checking

• Path analysis
• Doesn’t scale well
• Too many false positives

1 Lock(lock);

2 Read-Write(X);

3 Unlock(lock);

1

2 Read-Write(X);

3

What if these *never* run 
concurrently? (False Positive)
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Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea
• Track locks held by thread t
• On access to var v, check if t holds the proper locks
• Challenge: how to know what locks are required?

• Infer protection relation
• Infer which locks protect which variable from execution history.
• Assume every lock protects every variable
• On each access, use locks held by thread to narrow that 

assumption

Narrow down set of 
locks maybe 
protecting v
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Lockset Algorithm Example

9

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

ACK! race
Pretty clever!
Why isn’t this 

a complete 
solution?
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Improving over lockset

1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2  
3  read-write(X);
4  
5 }

Lockset detects a race
There is no race: why not?
• A-1 happens before B-3
• B-3 happens before A-6
• Insight: races when “happens-before” cannot be known

thread A thread B
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Thread 2

Happens-before

• Happens-before relation
• Within single thread
• Between threads

• Accessing vars not ordered by 
happens-before → race

• Captures locks + dynamism

• How to track happens-before?
• Sync objects → ordering
• fork/join/etc → ordering
• But how to order events across 

different threads/CPUs?

Thread 1

T1 access to V
“Happens-before”
T2 access to V
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Ordering and Causality

A, B, C have local orders

• Want total order
• (Need happens-before)
• But only for causality

Different types of clocks

• Physical

• Logical
• TS(A) later than others A knows about

• Vector 
• TS(A): what A knows about other TS’s

• Matrix
• TS(A) is N^2: pairwise knowledge
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System B

System C

C sends 
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Strawperson Approach

• In reality, we do not know if Tc occurred before Ta and Tb. Why?

• In an asynchronous system clocks are not synchronized!

System A

System B

System C

C sends 
data

Tc

Ta

A asks for 
work

Tb

B asks for 
data C sends 

data

Tc



Rules for Ordering of Events

• local events precede one another →
precede one another globally:
• If ei

k ,ei
m Є hi and k < m, then ei

k→ei
m

• Send of message always precedes receipt :
• If ei = send(m) and ej= receive(m), then ei→ej

• Event ordering is transitive:
• If e → e’ and e’ → e”, then e → e”
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Cuts of an Asynchronous Computation

• Suppose there is an external monitor process

• External monitor constructs a global state:
• Asks processes to send it local history

• Global state constructed from these local histories is:

a cut of a distributed computation
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Consistent vs. Inconsistent Cuts

• A cut is consistent if 
• for any event e included in the cut

• any e’ that causally precedes e is also in the cut

• For cut C:
(e Є C) Λ (e’→ e) => e’ Є C
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A consistent cut corresponds to a consistent global state



What Do We Need to Know to 
Construct a Consistent Cut?
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We must know the causal 
ordering of events. If we 

do we can detect an 
inconsistent cut



Logical Clocks

• Each process maintains a local value of a logical clock LC

• LC for process p counts how many events causally preceded the 
current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei

• Suppose we had only a single process:
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Logical Clocks (cont.)

With >1 process (thread) logical clocks updated:

• Each message m sent contains a timestamp TS(m)

• TS(m) is the logical clock value associated with sending 
event at the sending process
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Logical Clocks (cont.)

With >1 process (thread) logical clocks updated:

• Each message m sent contains a timestamp TS(m)

• TS(m) is the logical clock value associated with sending 
event at the sending process
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Logical Clocks (cont)

• When process receives m, update logical clock to:

max{LC, TS(m)} + 1
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Logical Clocks (cont)

• When process receives m, update logical clock to:
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Total vs Partial Order
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Vector Clock

Replace Logical scalar with Vector!
Vi[i] : #events occurred at i
Vi[j] : #events i knows occurred at j
Update

• On local-event: increment Vi[I]
• On send: increment, piggyback 

entire local vector V
• On recv-message: Vj[k] = max( 

Vj[k],Vi[k] )
• Vj[i] = Vj[i]+1 (increment local 

clock)
• Receiver learns about number 

of events sender knows 
occurred elsewhere

Key takeaways:
• Need to order operations
• Can’t rely on real-time
• Vector clock: timestamping algorithm s.t.

• TS(A) < TS(B) → A happens before B
• Independent ops remain unordered

• Good primitive for tracking happens-before
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Better Dynamic Race Detection

⚫ Lockset: verify locking discipline for shared memory
✓Detect race regardless of thread scheduling

 False positives because other synchronization primitives 
(fork/join, signal/wait) not supported

⚫ Happens-before: track partial order of program events
✓ Supports general synchronization primitives

 Higher overhead compared to lockset

 False negatives due to sensitivity to thread scheduling

RaceTrack = Lockset + Happens-before



Summary

Race detection
• Static vs Dynamic
• Lock set vs. Happens-Before
• Lots of really interesting related work
• Lots of increasingly practical tools



False positive using Lockset  

Inst State Lockset 

1 Virgin { }

3 Exclusive:t { }

6 Shared Modified {a}

9 Report race { }

Tracking accesses to X



RaceTrack Notations

Notation Meaning

L
t

Lockset of  thread t

C
x

Lockset of memory x

B
u

Vector clock of thread u

S
x

Threadset of memory x

t
i

Thread t at clock time i



RaceTrack Algorithm

Notation Meaning
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Threadset of memory x

t
1

Thread t at clock time 1



Avoiding Lockset's false positive (1)

Inst C
x

S
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L
t

B
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L
u

B
u

0 All { } { } {t
1
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} { } { t
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} - -



Avoiding Lockset's false positive (2)
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Avoiding Lockset's false positive (2)
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Only one thread!
Are we done? 



Vector Clock Example



Vector Clock Example

Key takeaway:
• Need to order operations
• Can’t rely on real-time
• Vector clock: timestamping algorithm s.t.

• TS(A) < TS(B) → A happens before B
• Independent ops remain unordered


