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Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Use locks!
* But automate bug-finding!
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IRaces

1 Lock(lock); 1
2 Read-Write (X); 2 Read-Write (X) ;
3 Unlock (lock); 3

* |sthere a race here?
e What is a race?

* Informally: accesses with foeall
* Formally: o.ra (X){ _
S R R If(not_synchronized(X))

* No intervening synchroniza declare race()
* At least one access is a writ —

How to detect races:
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|Races

1 read-write(X); 1 thread-proc() {
2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);
4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);

Unsynchronized access can be

* Benign due to fork/join

* Benign due to view serializability

* Benign due to application-level constraints

Is there a race here? * E.g. approximate stats counters
How can a race detector tell?



How to detect races:

. forall(X) {
| Detecting Races f(not_synchronized (X))

declare_race()

* Static
* Run a tool that analyses just code
* Maybe code is annotated to help
* Conservative: may detect races that never occur

* Dynamic
* Instrument code
* Check synchronization invariants on accesses
* More precise

Difficult to make fast

* Lockset vs happens-before

1 Lock(lock) ; 1
2 Read-Write (X); 2 Read-Write (X) ;
3 Unlock(lock) ; 3
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I Static Data Race Detection

* Type-based analysis

* Language type system augmented
e express common synchronization relationships:
e correct typing—>no data races

 Difficult to do (although...cf. Rust)

e Often restricts the type of synchronization primitives

e Language features
* e.g., use of monitors
* Only works for static data — not dynamic data

* Model Checking

* Path analysis What if these *never* run
 Doesn’t scale well

* Too many false positives

1 Lock (lock); 1
2 Read-Write (X) ; 2 Read-Write (X) ;
3 Unlock (lock) ; 3

concurrently? (False Positive)
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* Locking discipline
e Every shared mutable variable is protected by some locks

* Core idea
* Track locks held by thread t
* On access to var v, check if t holds the proper locks
* Challenge: how to know what locks are required?

* Infer protection relation
* Infer which locks protect which variable from execution history.
* Assume every lock protects every variable

* On each access, use locks held by thread to narrow that
assumption



| Lockset Algorithm

* Locking discipline
e Every shared mutable variable is protected by some locks
e Core ides Narrow down set of
locks maybe
* Track locks held by thread t protecting v
* On access to var v, check if t heifls the proper locks
* Challenge: how to know wiat locks are required?

* Infer protection rel
* Infer which locks protect which variable from execution history.
Let locks held(t) be the set of locks held by thread ¢.
For each v, initialize C(v) to the set of all locks.

On each access to v by thread ¢,
set C(v) := C(v) N locks_held(t);
if C(v) = { }, then issue a warning.




| Lockset Algorithm Example

lock(lockA);
V++;
unlock(lockA);

lock(lockB);
V++;
unlock(lockB);

locks_held(t)
{1}

C(v)
{lockA, lockB}
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locks_held(t) C(v)

{} {lockA, lockB}
=) lock(lockA); {lockA}
V++;
unlock(lockA);
lock(lockB);
V++;

unlock(lockB);



| Lockset Algorithm Example

locks_held(t) C(v)

1} {lockA, lockB}
lock(lockA); {1lockA}

) VH; {19CkA}}
unlock(lockA); C(v) N locks_held(t)
lock(lockB);

V++;

unlock(lockB);
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lock(lockA);
V++;
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V++;
unlock(lockB);
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| Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}

lock(lockA); {1lockA}
V++; {lockA}

unlock(lockA); {7

lockB
lock(lockB); { J

0
unlock(lockB);



| Lockset Algorithm Example

lock(lockA);
V++;
unlock(lockA);

lock(lockB);
V++;
unlock(lockB);

locks_held(t) C(v)
U} {lockA, lockB}
{lockA}

{1lockA}
1)
{lockB}
{} U C(v) N locks_held(t)



| Lockset Algorithm Example

lock(lockA);
V++;
unlock(lockA);

lock(lockB);
V++;
unlock(lockB);

locks_held(t)

1}
{lockA}

1}

{lockB}

1}

C(v)
{lockA, lockB}

{lockA}

ACK! race



| Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {1lockA}
V++; {lockA}

unlock(lockA); {7

B) {lockB}
Pretty clever!
Why isn’t this KB); {} ACK! race
acomplete | 7’

solution?
\J )
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|Improving over lockset

1 read-write(X); 1 thread-proc() {
2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);
4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);

Lockset detects a race

There is no race: why not?

* A-1 happens before B-3

* B-3 happens before A-6

* Insight: races when “happens-before” cannot be known
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* Happens-before relation
* Within single thread
* Between threads

e Accessing vars not ordered
by happens-before > race

Thread 1

/
Lock (mu);
v:=vtl;

!

Unlock(mu);

.

~

/




I Happens-before

* Happens-before relation
* Within single thread
* Between threads

e Accessing vars not ordered
by happens-before > race

Thread 1
e N\

Lock (mu);

v =v+l;

!

Unlock(mu);

Thread 2

/
Lock (mu);
v:=vtl;

!

Unlock(mu);

- /

.

~

/




I Happens-before

* Happens-before relation Thread 1
* Within single thread / N
* Between threads
. Accessing vars not ordered | -ock(mu):
by happens-before = race v im vt
Unlock(mu);
- J

T1 accessto V
“Happens-before”
T2 accessto V

Thread 2

-

~~
Lock (mu);

v =v+l;

!

Unlock(mu);

\_

~

J




I Happens-before

* Happens-before relation Thread 1
* Within single thread / N
* Between threads
. Accessing vars not ordered | -ock(mu):
by happens-before = race v im vt

e Captures locks + dynamism

.

Unlock(mu);

/

T1 accessto V
“Happens-before”
T2 accessto V

Thread 2

-

~~
Lock (mu);

v =v+l;

!

Unlock(mu);

\_

~

J




I Happens-before

* Happens-before relation
* Within single thread
* Between threads

* Accessing vars not ordered by
happens-before = race

e Captures locks + dynamism

* How to track happens-before?
* Sync objects = ordering
 fork/join/etc = ordering

* But how to order events across
different threads/CPUs?

Thread 1

-

~
Lock (mu);

v =v+l;

!

Unlock(mu);

.

/

T1 accessto V
“Happens-before”
T2 accessto V

Thread 2

-

S~
Lock (mu);

v =v+l;

!

Unlock(mu);

\_

~

J
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IOrdering and Causality

Time

> A, B, C have local orders

A - - o =

* Want total order
* (Need happens-before)
B s - " ' e But only for causality

C—= » . — Different types of clocks
* Physical

* Logical
* TS(A) later than others A knows about

* Vector
* TS(A): what A knows about other TS’s

* Matrix
e TS(A) is NA2: pairwise knowledge
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I Strawperson Approach

* Each system records each event, timestamp

* Suppose events occur in this real order:
* Time Tc0: C sends data to B (before C stops responding)

 Time TaO0: A asks for work from B
 Time TbO: B asks for data from C

TcO Ta0 TbO
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* Thus, detect actual dependency chain Tc>Ta—=2>Th:

System A Ta
A asks for
work Th
System B
B asks for
C sends data
data
System C

Tc
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* In reality, we do not know if Tc occurred before Ta and Th. Why?

* In an asynchronous system clocks are not synchronized!
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IStrawperson Approach

* In reality, we do not know if Tc occurred before Ta and Th. Why?

* In an asynchronous system clocks are not synchronized!

System A Ta
A asks for
work Th
System B
B asks for
data
System C

Tc Tc



I Rules for Ordering of Events

* |local events precede one another =2
precede one another globally:

* Ifef e € h; and k < m, then e}—e™
* Send of message always precedes receipt :
* If e;=send(m) and e=receive(m), then e,—e;

* Event ordering is transitive:
e Ife—e’ande’— e”, then e — e”
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local events precede one another = precede one another globally:
If e e/ € h; and k < m, then ef—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e~ receive(m), then e,—e;
Event ordering is transitive:
Ife — e’and e’ — e”, then e — e”’
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local events precede one another = precede one another globally:
If e e/ € h; and k < m, then ef—e

‘ Sending a message always precedes receipt of that message:
If e;= send(m) and e~ receive(m), then e,—e;
Event ordering is transitive:
Ife — e’and e’ — e”, then e — e”’
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local events precede one another = precede one another globally:
If e e/ € h; and k < m, then ef—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e~ receive(m), then e,—e;
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Ife — e’and e’ — e”, then e — e”’
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local events precede one another = precede one another globally:
If e e/ € h; and k < m, then ef—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e~ receive(m), then e,—e;
Event ordering is transitive:
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I Space-time Diagram

P

1 2 5 6
€, €, €, €,
& >
1 3
€,
N g @ >
1 2 5 6
€; €3 €;
s —— & >
1 6 6
e, ve; e;

local events precede one another = precede one another globally:
If e e/ € h; and k < m, then ef—e

Sending a message always precedes receipt of that message:

If e;= send(m) and e= receive(m), then e,—e;
Event ordering is transitive:
Ife — e’and e’ — e”, then e — e”



I Space-time Diagram

1 2 3 4 5 6
b, e, e, e, e, e, e,
& >
1 2 3
P, €, e,
N g @ >
1 2 4 5 6
p, e, e? ef e, e,
& & & & > >
1 6 2 6

local events precede one another = precede one another globally:
If e e/ € h; and k < m, then ef—e
Sending a message always precedes receipt of that message:
If e;= send(m) and e~ receive(m), then e,—e;
Event ordering is transitive:
Ife — e’and e’ — e”, then e — e”’



I Cuts of an Asynchronous Computation

e Suppose there is an external monitor process

* External monitor constructs a global state:
* Asks processes to send it local history

e Global state constructed from these local histories is:
a cut of a distributed computation
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IExampIe Cuts




IConsistent vs. Inconsistent Cuts

* A cut is consistent if
e for any event e included in the cut
* any e’ that causally precedes e is also in the cut

* For cut C:
(e€C)A(e’—e)==>e’€C



I Are These Cuts Consistent?
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I Are These Cuts Consistent?

p
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included
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I Are These Cuts Consistent?

p
causally
precedes e,®

e’
>
...but not
included
1 .
€, in C
& >
e;’
® >
. wnsistent
included

in C C’

A consistent cut corresponds to a consistent global state



What Do We Need to Know to
Construct a Consistent Cut?

causally J
precedes e,®

. “ . )
...but not
We must know the causal , , included
ordering of events. If we € 2 in C
>

do we can detect an
inconsistent cut

>
inconsistent

CI

included
in C




I Logical Clocks

Each process maintains a local value of a logical clock LC

LC for process p counts how many events causally preceded the
current event at p (including the current event).

LC(e;) — the logical clock value at process p; at event e;

Suppose we had only a single process:
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Each process maintains a local value of a logical clock LC

LC for process p counts how many events causally preceded the
current event at p (including the current event).

LC(e;) — the logical clock value at process p; at event e;

Suppose we had only a single process:
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I Logical Clocks

Each process maintains a local value of a logical clock LC

LC for process p counts how many events causally preceded the
current event at p (including the current event).

LC(e;) — the logical clock value at process p; at event e;

Suppose we had only a single process:

1 2 3 4 5 6
€, €, €, €, €, €,

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6



I Logical Clocks (cont.)

With >1 process (thread) logical clocks updated:
* Each message m sent contains a timestamp TS(m)

* TS(m) is the logical clock value associated with sending
event at the sending process
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I Logical Clocks (cont.)

With >1 process (thread) logical clocks updated:
* Each message m sent contains a timestamp TS(m)

* TS(m) is the logical clock value associated with sending
event at the sending process




ILogicaI Clocks (cont)

 When process receives m, update logical clock to:
max{LC, TS(m)} + 1
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ILogicaI Clocks (cont)

 When process receives m, update logical clock to:
max{LC, TS(m)} + 1




ILogicaI Clocks (cont)

 When process receives m, update logical clock to:
max{LC, TS(m)} + 1

send(m) T1S(m)=1

What is the LC
value of e,??
2
—0



ILogicaI Clocks (cont)

 When process receives m, update logical clock to:
max{LC, TS(m)} + 1

send(m) T1S(m)=1

What is the LC
value of e,??
2
—0

LC=1 LC=2
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Awesome, right? }

Any drawbacks?
[ Total vs Partial Order ]
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| Vector Clock

Replace Logical scalar with Vector!
V[i] : #events occurred at i
V[j] : #events i knows occurred at j

Update
* On local-event: increment V[I]
* Onsend: increment, piggyback
entire local vector V
* On recv-message: V/[k] = max(
ViIKLV{K] )
 V[i] = V[i]+1 (increment local
clock)
* Receiver learns about number

of events sender knows
occurred elsewhere



| Vector Clock

c:0

Vector Clock

B:3
C:3

A2
B:5
c:4

A2
B:5
C:5

Replace Logical scalar with Vector!
V[i] : #events occurred at i
V[j] : #events i knows occurred at j

Update
* On local-event: increment V1]
* On send: increment, piggyback
entire local vector V
* On recv-message: V/[k] = max(
ViIKLV{K] )
 V[i] = V[i]+1 (increment local
clock)
* Receiver learns about number

of events sender knows
occurred elsewhere
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c:0

Vector Clock

B:3
C:3

A2
B:5
c:4

A2
B:5
C:5

Replace Logical scalar with Vector!
V[i] : #events occurred at i
V[j] : #events i knows occurred at j

Update
* On local-event: increment V1]
* On send: increment, piggyback
entire local vector V
* On recv-message: V/[k] = max(
ViIKLV{K] )
 V[i] = V[i]+1 (increment local
clock)
* Receiver learns about number

of events sender knows
occurred elsewhere



| Vector Clock

Replace Logical scalar with Vector!
Vector Clock V/[i] : #events occurred at i
V[j] : #events i knows occurred at j

Update
* On local-event: increment V1]
* On send: increment, piggyback
entire local vector V

* On recv-message: V/[k] = max(
VKL VIK])
 V[i] = V[i]+1 (increment local
¢ Az| [A2 clock)
g E H g:j g:g * Receiver learns about number
c:0 of events sender knows

occurred elsewhere
L B




| Vector Clock

M ™\ Replace Logical scalar with Vector!
Vector Clock V[i] : #events occurred at i

V[j] : #events i knows occurred at j
e Y
A:2 Not ordered!
B:2
C: A:3>2
\ B:3<4

Update
* On local-event: increment V1]
* On send: increment, piggyback
entire local vector V
* On recv-message: V/[k] = max(

A:2 A2
o o5 VIKLVK] )
 V[i] = V[i]+1 (increment local
C clock)

A2 A2
El B3 a::\ B:5| |B:5 * Receiver learns about number
C:2 c:3 c:4 C:5

c:0 of events sender knows
occurred elsewhere




| Vector Clock

Vector Clock

Update

A:32>2
B:3<4

Not ordered!

A
83 B:5 .
C:3 C:4

- .

A2
B:4 B:5
C:1

Key takeaways:
Need to order operations
e Can’trely on real-time

"\ Replace Logical scalar with Vector!
V[i] : #events occurred at i
V[j] : #events i knows occurred at j

On local-event: increment V [I]
On send: increment, piggyback
entire local vector V
On recv-message: V/[k] = max(
Vi[kL,V[K] )
 V[i] = V[i]+1 (increment local
clock)

* Vector clock: timestamping algorithm s.t.

* TS(A) < TS(B) =2 A happens before B

* Independent ops remain unordered
Good primitive for tracking happens-before
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I Happens-before

 Difficult to implement
* Need logical/vector clocks!
* Requires per-thread information
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| Happens-before

 Difficult to implement
* Need logical/vector clocks!
* Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

 Example

Thread 1

y =ytl;

Lock(mu);

|

v :=v+l;

Unlock(mu);

Thread 2

Lock(mu);

|

v =v+tl;

|

Unlock(mu);

|

y =ytl;



I Happens-before

Thread 1

 Difficult to implement
* Need logical/vector clocks! y=yt+l;
* Requires per-thread information

Lock(mu);
* Dependent on the interleaving v .:lvﬂ.
produced by the scheduler ' ’
Unlock(mu); Thread 2
 Example
e T1-acc(v) happens before T2-acc(v)
* T1-acc(y) happens before T1-acc(v) Lock(mu);
* T2-acc(v) happens before T2-acc(y) |
e Conclusion: no race on Y! vi=vil;
* Finding doesn’t generalize |
Unlock(mu);
}

y =ytl;



| Happens-before

 Difficult to implement
* Need logical/vector clocks!
* Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

 Example

T1-acc(v) happens before T2-acc(v)
T1-acc(y) happens before T1-acc(v)
T2-acc(v) happens before T2-acc(y)
Conclusion: norace on Y!

Finding doesn’t generalize



| Happens-before

Thread 2
 Difficult to implement
. Need-logical/vector glocks! | Lock(mu):
* Requires per-thread information
v :=vtl;

* Dependent on the interleaving
produced by the scheduler Unlock(mu);

Thread 1 / S
 Example

T1-acc(v) happens before T2-acc(v)
T1-acc(y) happens before T1-acc(v) y =y+l; /
T2-acc(v) happens before T2-acc(y)

Conclusion: norace onY! Lock(mu);
Finding doesn’t generalize

v :=v+l;

Unlock(mu);



IBetter Dynamic Race Detection

o Lockset: verify locking discipline for shared memory
v" Detect race regardless of thread scheduling
x False positives because other synchronization primitives
(fork/join, signal/wait) not supported
o Happens-before: track partial order of program events
v' Supports general synchronization primitives
x Higher overhead compared to lockset
x False negatives due to sensitivity to thread scheduling




ISummary

Race detection

Static vs Dynamic

Lock set vs. Happens-Before

Lots of really interesting related work
Lots of increasingly practical tools




IFaIse positive using Lockset

L
1 .
S~ 1 t:Fork(u) u Tracking accesses to X
2 Lo 5 uLockia 1V_
3t:Wrix) 6 u:Wrix) Irgin {}
2| 4 t:Unlock(a) 7 w:Unlock{a) 3 Exclusive:t {}

— 6 Shared Modified | {a}

*B__r_:;T_uin{u}
9 t:Wrix)
:&7_10 +-Fork(v) D 9 Report race {}
11 t:Lock(a) T 14 v:Lock(a)
12 t:Wr(x) 15 v:Wr(x)
3| 13 t:Unlock(a) 16 v:Unlocki(a)

“17 t:Join(v)

N




I RaceTrack Notations

|_t Lockset of thread t

CX Lockset of memory x

B Vector clock of thread u

u
SX Threadset of memory x
ti Thread t at clock time i
1% (teT:V(t) >0}
Inc(V,t) u— if u =1 then V(u) + 1 else V(u)

Merge(V,W)
Remove(V, W)

u — maz(V(u), W(u))
w— if V(u) < W(u) then 0 else V' (u)

e e e e



RaceTrack Algorithm

Lt Lockset of thread t
CX Lockset of memory x
Bt Vector clock of thread t
SX Threadset of memory x
t1 Thread t at clock time 1
VI £ [{teT:V(t)>0)
Ine(V,t) 2 yrifu=t then Vi(u)+ 1 else V(u)
Merge(V,W) 2 uws max(V(u), W(u))
Remove(V, W) 2 e if V(u) < W(u) then 0 else V(u)

At t:Lock(l):
Ly — Ly U{l}

At t:Unlock(l):
Lt — Lt - {E]f

At t:Fork(u):
Ly —{}
B, «— Merge({(u,1)}, B;)
B; «— Inec(B;,1)

At t:Join(u):
Bi «— Merge(B:, B.)

At t:Rd(z) or t:Wr(z):
Sz «— Merge(Remove(Sz, B:), {{t, Be(t))})
if [Sz] > 1
then Cy «— C5 M Ly
else C; — Ly
if [Sz| > 1 A C; = {} then report race



IAvoiding Lockset's false positive (1)

[
1
SN _i‘_:_Furk{u}

2 a‘:].nr:k{c_:}l
3t:Wrix)

*é_i‘_fgﬂiﬂlf 1)
9t:Wr(x)
10 tFork(v)

11 t:Lock(a)
12 :Wr(x)
3| 13 t:Unlock(a)

17 t-Join(v)

vV

u

p 5 u:Lock(a)
6 uw:Wrix)
9 4 t:Unlock(a) _ 7 u:Unlock(a)

U

T 14 v:Lockia)
15 v:Wr(x)
N 16 v:Unlock(a)

0 ALy {r ] {t) - -

1 {t} | {} {t,u}
2 {a}

3 {ap {t;}

4 {}

5 {a}

6 {t,,u.}

7 {}

8 {t,,u.} - -




IAvoiding Lockset's false positive (2)

L st C.S, L B L, B, |
1 - -
ol Fur]{{ 2) u 8 {a} | {t,u} {}  {t,u;}
2 - Lock(a) 5 u: Luck 9 {} f{t}
3t:Wrix) 6 w:Wr( 10 t t
9 41U rulunk{c.r Tu[n_lunk tpuid GV
8 i‘ Jmﬂ{u} 1 {a}
9 t:Wr(x) 12 | {a} {t)
10 t:Fork(v 3
XZ____E_{H________ D 1 0
11 t:Lock(a) 4 14 v:Lock(a) 14 {a)
12 t:Wrix) 15 v:Wr(x)
3| 13 £:Unlock(a) <~ 16 v:Unlock(a) 19 {tsvy}
— 16 {}
17 tJoin(uv)

A4



IAvoiding Lockset's false positive (2)

1
1
St F_urk{ u) LL

2 t:Lockia)
3t:Wrix)
o 4t:U nlunk{a

8 i‘ Jmﬂ{u}
9t:-Wrix)
710 t:Fork(v)

11 t:Lock(a)
12 t:Wrix)
3| 13 t:Unlock(a)

17 t:Join(v)

A4

5 u: Luck
6 w:Wr(
7 u: Lru_lcmk

U

4 14 v:Lock(a)
15 v:Wr(x)
16 v:Unlock(a)

{a}

{ } {tzau1} - -

{tpur | {} | {tuvyd

11

{a}

12

{t;}

13

{}

14

{a}

15
16

{t;vy}

i}

Only one thread!
Are we done?



I Vector Clock Example

Time
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I Vector Clock Example

Time

—

o ” Key takeaway:

* Need to order operations

 Can’trely on real-time

* Vector clock: timestamping algorithm s.t.
* TS(A) < TS(B) =2 A happens before B
* Independent ops remain unordered




