
Chris Rossbach & Calvin Lin

cs380p

Rust

Rust!

Overview

Decoupling Shared, Mutable, and State

Channels and Synchronization

Acknowledgements:

• https://www.slideshare.net/nikomatsakis/rust-concurrency-tutorial-2015-1202

• Thanks Nikolas Matsakis!

Outline

https://www.slideshare.net/nikomatsakis/rust-concurrency-tutorial-2015-1202

Rust Motivation

Rust Motivation

Locks’ litany of problems:

Rust Motivation

Locks’ litany of problems:

• Deadlock

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

• Poor composability…

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

• Poor composability…

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

• Poor composability…

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

• Poor composability…

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Shared mutable state requires locks

• So…separate sharing and mutability

• Use type system to make concurrency safe

• Ownership

• Immutability

• Careful library support for sync primitives

Multi-paradigm language modeled after C and C++
Functional, Imperative, Object-Oriented

Primary Goals:
Safe Memory Management

Safe Concurrency and Concurrent Controls

Rust Goals

Multi-paradigm language modeled after C and C++
Functional, Imperative, Object-Oriented

Primary Goals:
Safe Memory Management

Safe Concurrency and Concurrent Controls

Rust Goals

Be Fast: systems programming
Be Safe: don’t crash

Memory Management

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Memory Management

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Objects are immutable by default
User has more explicit control over mutability

Memory Management

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Objects are immutable by default
User has more explicit control over mutability

Declared variables must be initialized prior to execution
A bit of a pain for static/global state

Memory Management

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/

Functions determined unsafe via specific behavior
• Deference null or raw pointers

• Data Races

• Type Inheritance

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/

Functions determined unsafe via specific behavior
• Deference null or raw pointers

• Data Races

• Type Inheritance

Using “unsafe” keyword → bypass compiler enforcement
• Don’t do it. Not for the lab, anyway

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/

Functions determined unsafe via specific behavior
• Deference null or raw pointers

• Data Races

• Type Inheritance

Using “unsafe” keyword → bypass compiler enforcement
• Don’t do it. Not for the lab, anyway

The user deals with the integrity of the code

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/

First-Class Functions and Closures
Similar to Lua, Go, …

Algebraic data types (enums)

Class Traits
Similar to Java interfaces

Allows classes to share aspects

Other Relevant Features

First-Class Functions and Closures
Similar to Lua, Go, …

Algebraic data types (enums)

Class Traits
Similar to Java interfaces

Allows classes to share aspects

Other Relevant Features

Hard to use/learn without
awareness of these issues

Concurrency

Tasks → Rust’s threads

Concurrency

Tasks → Rust’s threads

Each task → stack and a heap
Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Concurrency

Tasks → Rust’s threads

Each task → stack and a heap
Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Concurrency

Tasks → Rust’s threads

Each task → stack and a heap
Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Task States: Running, Blocked, Failing, Dead
Failing task: interrupted by another process
Dead task: only viewable by other tasks

Concurrency

Tasks → Rust’s threads

Each task → stack and a heap
Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Task States: Running, Blocked, Failing, Dead
Failing task: interrupted by another process
Dead task: only viewable by other tasks

Scheduling
Each task → finite time-slice
If task doesn’t finish, deferred until later
“M:N scheduler”

Concurrency

fn main() {

println!("Hello, world!")

}

Hello World

Ownership

Ownership
n. The act, state, or right of possessing something

Ownership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing →
No need for a runtime

Memory safety (GC)

Data-race freedom

Ownership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing →
No need for a runtime

Memory safety (GC)

Data-race freedom

Ownership

MM Options:
• Managed languages: GC
• Native languages: manual

management
• Rust: 3rd option: track

ownership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing →
No need for a runtime

Memory safety (GC)

Data-race freedom

Ownership

MM Options:
• Managed languages: GC
• Native languages: manual

management
• Rust: 3rd option: track

ownership

• Each value in Rust has a variable called its owner.
• There can only be one owner at a time.
• Owner goes out of scope→value will be dropped.

fn main() {

let name = format!("...");

helper(name);

}

Ownership/Borrowing

fn main() {

let name = format!("...");

helper(name);

}

Ownership/Borrowing

fn main() {

let name = format!("...");

helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

println!(“{}”, name);

}

fn main() {

let name = format!("...");

helper(name);

helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

println!(“{}”, name);

}

fn main() {

let name = format!("...");

helper(name);

helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

println!(“{}”, name);

}

Error: use of moved value: `name`

fn main() {

let name = format!("...");

helper(name);

helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

fn main() {

let name = format!("...");

helper(name);

helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

fn main() {

let name = format!("...");

helper(name);

helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

What kinds of problems might this prevent?

fn main() {

let name = format!("...");

helper(name);

helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

Pass by reference takes “ownership implicitly” in other languages like Java

What kinds of problems might this prevent?

fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing

fn helper(name: &String) {

println!(“{}”, name);

}

fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing

fn helper(name: &String) {

println!(“{}”, name);

}

Lend the string

fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing

fn helper(name: &String) {

println!(“{}”, name);

}

Lend the string

Take a reference to a String

fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing

fn helper(name: &String) {

println!(“{}”, name);

}

Lend the string

Take a reference to a String

Why does this fix the problem?

fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing with Concurrency

fn helper(name: &String) {

thread::spawn(||{

println!("{}", name);

});

}

fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing with Concurrency

fn helper(name: &String) {

thread::spawn(||{

println!("{}", name);

});

}

Lifetime `static` required

fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing with Concurrency

fn helper(name: &String) {

thread::spawn(||{

println!("{}", name);

});

}

Lifetime `static` required

fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing with Concurrency

fn helper(name: &String) {

thread::spawn(||{

println!("{}", name);

});

}

Lifetime `static` required

Does this prevent the exact same class of problems?

fn main() {

let name = format!("...");

helper(name.clone());

helper(name);

}

Clone, Move

fn helper(name: String) {

thread::spawn(move || {

println!("{}", name);

});

}

fn main() {

let name = format!("...");

helper(name.clone());

helper(name);

}

Clone, Move

fn helper(name: String) {

thread::spawn(move || {

println!("{}", name);

});

}

Explicitly take ownership

fn main() {

let name = format!("...");

helper(name.clone());

helper(name);

}

Clone, Move

fn helper(name: String) {

thread::spawn(move || {

println!("{}", name);

});

}

Explicitly take ownership

Ensure concurrent owners
Work with different copies

fn main() {

let name = format!("...");

helper(name.clone());

helper(name);

}

Clone, Move

fn helper(name: String) {

thread::spawn(move || {

println!("{}", name);

});

}

Is this better?

Explicitly take ownership

Ensure concurrent owners
Work with different copies

fn main() {

let name = format!("...");

helper(name.clone());

helper(name);

}

Clone, Move

fn helper(name: String) {

thread::spawn(move || {

println!("{}", name);

});

}

Is this better?

Explicitly take ownership

Ensure concurrent owners
Work with different copies

Copy versus Clone:

Default: Types cannot be copied

• Values move from place to place

• E.g. file descriptor

Clone: Type is expensive to copy

• Make it explicit with clone call

• e.g. Hashtable

Copy: type implicitly copy-able

• e.g. u32, i32, f32, …

#[derive(Clone, Debug)]

struct Structure {

id: i32,

map: HashMap<String, f32>,

}

impl Structure {

fn mutate(&self, name: String, value: f32) {

self.map.insert(name, value);

}

}

Mutability

struct Structure {

id: i32,

map: HashMap<String, f32>,

}

impl Structure {

fn mutate(&self, name: String, value: f32) {

self.map.insert(name, value);

}

}

Mutability

Error: cannot be borrowed as mutable

struct Structure {

id: i32,

map: HashMap<String, f32>,

}

impl Structure {

fn mutate(&self, name: String, value: f32) {

self.map.insert(name, value);

}

}

Mutability

Error: cannot be borrowed as mutable

struct Structure {

id: i32,

map: HashMap<String, f32>,

}

impl Structure {

fn mutate(&mut self, name: String, value: f32){

self.map.insert(name, value);

}

}

Mutability

struct Structure {

id: i32,

map: HashMap<String, f32>,

}

impl Structure {

fn mutate(&mut self, name: String, value: f32){

self.map.insert(name, value);

}

}

Mutability

struct Structure {

id: i32,

map: HashMap<String, f32>,

}

impl Structure {

fn mutate(&mut self, name: String, value: f32){

self.map.insert(name, value);

}

}

Mutability

Key idea:
• Force mutation and ownership to be explicit
• Fixes MM *and* concurrency in fell swoop!

Sharing State: Channels

fn main() {

Sharing State: Channels

fn main() {

let (tx0, rx0) = channel();

Sharing State: Channels

fn main() {

let (tx0, rx0) = channel();

thread::spawn(move || {

let (tx1, rx1) = channel();

tx0.send((format!("yo"), tx1)).unwrap();

let response = rx1.recv().unwrap();

println!("child got {}", response);

});

Sharing State: Channels

fn main() {

let (tx0, rx0) = channel();

thread::spawn(move || {

let (tx1, rx1) = channel();

tx0.send((format!("yo"), tx1)).unwrap();

let response = rx1.recv().unwrap();

println!("child got {}", response);

});

let (message, tx1) = rx0.recv().unwrap();

tx1.send(format!("what up!")).unwrap();

println("parent received {}", message);

}

Sharing State: Channels

fn main() {

let (tx0, rx0) = channel();

thread::spawn(move || {

let (tx1, rx1) = channel();

tx0.send((format!("yo"), tx1)).unwrap();

let response = rx1.recv().unwrap();

println!("child got {}", response);

});

let (message, tx1) = rx0.recv().unwrap();

tx1.send(format!("what up!")).unwrap();

println("parent received {}", message);

}

Sharing State: Channels

fn main() {

let (tx0, rx0) = channel();

thread::spawn(move || {

let (tx1, rx1) = channel();

tx0.send((format!("yo"), tx1)).unwrap();

let response = rx1.recv().unwrap();

println!("child got {}", response);

});

let (message, tx1) = rx0.recv().unwrap();

tx1.send(format!("what up!")).unwrap();

println("parent received {}", message);

}

Sharing State: Channels

“yo!”

fn main() {

let (tx0, rx0) = channel();

thread::spawn(move || {

let (tx1, rx1) = channel();

tx0.send((format!("yo"), tx1)).unwrap();

let response = rx1.recv().unwrap();

println!("child got {}", response);

});

let (message, tx1) = rx0.recv().unwrap();

tx1.send(format!("what up!")).unwrap();

println("parent received {}", message);

}

Sharing State: Channels

“yo!”“what up!”

fn main() {

let (tx0, rx0) = channel();

thread::spawn(move || {

let (tx1, rx1) = channel();

tx0.send((format!("yo"), tx1)).unwrap();

let response = rx1.recv().unwrap();

println!("child got {}", response);

});

let (message, tx1) = rx0.recv().unwrap();

tx1.send(format!("what up!")).unwrap();

println("parent received {}", message);

}

Sharing State: Channels

fn main() {

let (tx0, rx0) = channel();

thread::spawn(move || {

let (tx1, rx1) = channel();

tx0.send((format!("yo"), tx1)).unwrap();

let response = rx1.recv().unwrap();

println!("child got {}", response);

});

let (message, tx1) = rx0.recv().unwrap();

tx1.send(format!("what up!")).unwrap();

println("parent received {}", message);

}

Sharing State: Channels

APIs return Option<T>

fn main() {

let var = Structure::new();

for i in 0..N {

thread::spawn(move || {

// ok to mutate var?

});

}

}

Sharing State

fn main() {

let var = Structure::new();

for i in 0..N {

thread::spawn(move || {

// ok to mutate var?

});

}

}

Sharing State

fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

thread::spawn(move || {

let ldata = Arc::clone(&var_arc);

let vdata = ldata.lock();

// ok to mutate var (vdata)!

});

}

}

Sharing State: Arc and Mutex

fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

thread::spawn(move || {

let ldata = Arc::clone(&var_arc);

let vdata = ldata.lock();

// ok to mutate var (vdata)!

});

}

}

Sharing State: Arc and Mutex

fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

thread::spawn(move || {

let ldata = Arc::clone(&var_arc);

let vdata = ldata.lock();

// ok to mutate var (vdata)!

});

}

}

Sharing State: Arc and Mutex

fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

thread::spawn(move || {

let ldata = Arc::clone(&var_arc);

let vdata = ldata.lock();

// ok to mutate var (vdata)!

});

}

}

Sharing State: Arc and Mutex

fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

thread::spawn(move || {

let ldata = Arc::clone(&var_arc);

let vdata = ldata.lock();

// ok to mutate var (vdata)!

});

}

}

Sharing State: Arc and Mutex

fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

thread::spawn(move || {

let ldata = Arc::clone(&var_arc);

let vdata = ldata.lock();

// ok to mutate var (vdata)!

});

}

}

Sharing State: Arc and Mutex

Key ideas:
• Use reference counting wrapper to pass refs
• Use scoped lock for mutual exclusion
• Actually compiles → works 1st time!

Summary

Rust: best of both worlds
systems vs productivity language

Separate sharing, mutability, concurrency

Type safety solves MM and concurrency

Have fun with the lab!

