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Rust!

Overview

Decoupling Shared, Mutable, and State

Channels and Synchronization
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Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

• Poor composability…

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Shared mutable state requires locks

• So…separate sharing and mutability

• Use type system to make concurrency safe

• Ownership

• Immutability

• Careful library support for sync primitives
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Functional, Imperative, Object-Oriented

Primary Goals:
Safe Memory Management

Safe Concurrency and Concurrent Controls

Rust Goals

Be Fast: systems programming
Be Safe: don’t crash
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Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Objects are immutable by default
User has more explicit control over mutability

Declared variables must be initialized prior to execution
A bit of a pain for static/global state

Memory Management
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Functions determined unsafe via specific behavior
• Deference null or raw pointers

• Data Races

• Type Inheritance

Using “unsafe” keyword → bypass compiler enforcement
• Don’t do it. Not for the lab, anyway

The user deals with the integrity of the code

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/
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First-Class Functions and Closures
Similar to Lua, Go, …

Algebraic data types (enums)

Class Traits
Similar to Java interfaces

Allows classes to share aspects

Other Relevant Features

Hard to use/learn without 
awareness of these issues
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Tasks → Rust’s threads

Each task → stack and a heap
Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Task States: Running, Blocked, Failing, Dead
Failing task: interrupted by another process
Dead task: only viewable by other tasks

Scheduling
Each task → finite time-slice
If task doesn’t finish, deferred until later
“M:N scheduler”

Concurrency



fn main() {

println!("Hello, world!")

}

Hello World
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Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing →
No need for a runtime

Memory safety (GC)

Data-race freedom

Ownership

MM Options:
• Managed languages: GC
• Native languages: manual 

management
• Rust: 3rd option: track 

ownership

• Each value in Rust has a variable called its owner.
• There can only be one owner at a time.
• Owner goes out of scope→value will be dropped.
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fn main() {
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helper(name);

helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

Pass by reference takes “ownership implicitly” in other languages like Java

What kinds of problems might this prevent?
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fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing

fn helper(name: &String) {

println!(“{}”, name);

}

Lend the string

Take a reference to a String

Why does this fix the problem?
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fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing with Concurrency

fn helper(name: &String) {

thread::spawn(||{

println!("{}", name);

});

}

Lifetime `static` required

Does this prevent the exact same class of problems?
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fn main() {

let name = format!("...");

helper(name.clone());

helper(name);

}

Clone, Move

fn helper(name: String) {

thread::spawn(move || {

println!("{}", name);

});

}

Is this better?

Explicitly take ownership

Ensure concurrent owners 
Work with different copies

Copy versus Clone:

Default: Types cannot be copied

• Values move from place to place

• E.g. file descriptor

Clone: Type is expensive to copy

• Make it explicit with clone call

• e.g. Hashtable

Copy: type implicitly copy-able

• e.g. u32, i32, f32, …

#[derive(Clone, Debug)]
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struct Structure {

id: i32,

map: HashMap<String, f32>,

}

impl Structure {

fn mutate(&mut self, name: String, value: f32){

self.map.insert(name, value);

}

}

Mutability

Key idea:
• Force mutation and ownership to be explicit
• Fixes MM *and* concurrency in fell swoop!
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fn main() {

let (tx0, rx0) = channel();

thread::spawn(move || {

let (tx1, rx1) = channel();

tx0.send((format!("yo"), tx1)).unwrap();

let response = rx1.recv().unwrap();

println!("child got {}", response);

});

let (message, tx1) = rx0.recv().unwrap();

tx1.send(format!("what up!")).unwrap();

println("parent received {}", message);

}

Sharing State: Channels

APIs return Option<T>
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fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

thread::spawn(move || {

let ldata = Arc::clone(&var_arc);

let vdata = ldata.lock();

// ok to mutate var (vdata)!

});

}

}

Sharing State: Arc and Mutex

Key ideas:
• Use reference counting wrapper to pass refs
• Use scoped lock for mutual exclusion
• Actually compiles → works 1st time!



Summary

Rust: best of both worlds
systems vs productivity language

Separate sharing, mutability, concurrency

Type safety solves MM and concurrency

Have fun with the lab!


