
interface definition, the caller specifies the data types it would like to receive. This flexibility makes it easier 
for diverse kinds of callers to invoke the service.

REST/HTTP is popular for its speed and simplicity. Web Services require parameters in SOAP messages to 
be represented in XML, which is expensive to parse. XML is self-describing and highly interoperable, but these 
benefits are not always important, for example, for simple services. A very simple interface makes it easier and 
faster to manipulate in limited languages such as JavaScript.

hardware architecture

The computers that run these programs have a range of processing power. A display device could be a character-
at-a-time terminal, a handheld device, a low-end Pc, or a powerful workstation. Front-end programs, request 
controllers, transaction servers, and database systems could run on any kind of server machine, ranging from a 
low-end server machine, to a high-end multiprocessor mainframe, to a distributed system. A distributed system 
could consist of many computers, localized within a machine room or campus or geographically dispersed in a 
region or worldwide.

Some of these systems are quite small, such as a few display devices connected to a small machine on a Pc 
Local Area Network (LAN). Big TP systems tend to be enterprise-wide or Internet-wide, such as airline and 
financial systems, Internet retailers, and auction sites. The big airline systems have on the order of 100,000 dis-
play devices (terminals, ticket printers, and boarding-pass printers) and thousands of disk drives, and execute 
thousands of transactions per second at their peak load. The biggest Internet systems have hundreds of millions 
of users, with tens of millions of them actively using the system at any one time.

Given this range of capabilities of computers that are used for TP, we need some terminology to distinguish 
among them. We use standard words for them, but in some cases with narrower meanings than is common in 
other contexts.

We define a machine to be a computer that is running a single operating system image. It could use a single-
core or multicore processor, or it could be a shared-memory multiprocessor. Or it might be a virtual machine 
that is sharing the underlying hardware with other virtual machines. A server machine is a machine that exe-
cutes programs on behalf of client programs that typically execute on other computers. A system is a set of one 
or more machines that work together to perform some function. For example, a TP system is a system that sup-
ports one or more TP applications. A node (of a network) is a system that is accessed by other machines as if it
were one machine. It may consist of several machines, each with its own network address. However, the system 
as a whole also has a network address, which is usually how other machines access it.

A server process is an operating system process, P, that executes programs on behalf of client programs exe-
cuting in other processes on the same or different machines as the one where P is running. We often use the word 
“server” instead of “server machine” or “server process” when the meaning is obvious from context.

1.3  aTOMiciTy, cOnsisTency, isOlaTiOn, and durabiliTy
There are four critical properties of transactions that we need to understand at the outset:

n Atomicity: The transaction executes completely or not at all.
n consistency: The transaction preserves the internal consistency of the database.
n Isolation: The transaction executes as if it were running alone, with no other transactions.
n Durability: The transaction’s results will not be lost in a failure.

1.3  Atomicity, Consistency, Isolation, and Durability    �
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This leads to an entertaining acronym, AcID. People often say that a TP system executes AcID transac-
tions, in which case the TP system has “passed the AcID test.” Let’s look at each of these properties in turn and 
examine how they relate to each other.

atomicity

First, a transaction needs to be atomic (or all-or-nothing), meaning that it executes completely or not at all. 
There must not be any possibility that only part of a transaction program is executed.

For example, suppose we have a transaction program that moves $100 from account A to account B. It takes 
$100 out of account A and adds it to account B. When this runs as a transaction, it has to be atomic—either both 
or neither of the updates execute. It must not be possible for it to execute one of the updates and not the other.

The TP system guarantees atomicity through database mechanisms that track the execution of the transac-
tion. If the transaction program should fail for some reason before it completes its work, the TP system will 
undo the effects of any updates that the transaction program has already done. Only if it gets to the very end and 
performs all of its updates will the TP system allow the updates to become a permanent part of the database.

If the TP system fails, then as part of its recovery actions it undoes the effects of all updates by all transac-
tions that were executing at the time of the failure. This ensures the database is returned to a known state fol-
lowing a failure, reducing the requirement for manual intervention during restart.

By using the atomicity property, we can write a transaction program that emulates an atomic business trans-
action, such as a bank account withdrawal, a flight reservation, or a sale of stock shares. Each of these business 
actions requires updating multiple data items. By implementing the business action by a transaction, we ensure 
that either all the updates are performed or none are.

The successful completion of a transaction is called commit. The failure of a transaction is called abort.

Handling Real-World Operations
During its execution, a transaction may produce output that is displayed back to the user. However, since the 
transaction program is all-or-nothing, until the transaction actually commits, any results that the transaction 
might display to the user should not be taken seriously, because it’s still possible that the transaction will abort. 
Anything displayed on the display device could be wiped out in the database on abort.

Thus, any value that the transaction displays may be used by the end-user only if the transaction commits 
and not if the transaction aborts. This requires some care on the part of users (see Figure 1.4). If the system 
actually displays some of the results of a transaction before the transaction commits, and if the user utilizes 
any of these results as input to another transaction, then we have a problem. If the first transaction aborts and 
the second transaction commits, then the all-or-nothing property has been broken. That is, some of the results 
of the first transaction will be reflected in the results of the second transaction. But other results of the first 
transaction, such as its database updates, were not performed because the transaction aborted.

Some systems solve this problem simply by not displaying the result of a transaction until after the transac-
tion commits, so the user can’t inadvertently make use of the transaction’s output and then have it subsequently 
abort. But this too has its problems (see Figure 1.5): If the transaction commits before displaying any of its 
results, and the system crashes before the transaction actually displays any of the results, then the user won’t 
get a chance to see the output. Again, the transaction is not all-or-nothing; it executed all its database updates 
before it committed, but did not display its output.

We can make the problem more concrete by looking at it in the context of an automated teller machine 
(ATM) (see Figure 1.6). The output, for example, may be an operation that dispenses $100 from the ATM. If 
the system dispenses the $100 before the transaction commits, and the transaction ends up aborting, then the 



bank gives up the money but does not record that fact in the database. If the transaction commits and the sys-
tem fails before it dispenses the $100, then the database says the $100 was given to the customer, but in fact 
the customer never got the money. In both cases, the transaction’s behavior is not all-or-nothing.

A closely-related problem is that of ensuring that each transaction executes exactly once. To do this, the 
transaction needs to send an acknowledgment to its caller, such as sending a message to the ATM to dispense 
money, if and only if it commits. However, sending this acknowledgment is not enough to guarantee exactly-
once behavior because the caller cannot be sure how to interpret the absence of an acknowledgment. If the caller 
fails to receive an acknowledgment, it might be because the transaction aborted, in which case the caller needs to 
resubmit a request to run a transaction (to ensure the transaction executes once). Or it might be that the transac-
tion committed but the acknowledgment got lost, in which case the caller must not resubmit a request to run the 
transaction because that would cause the transaction to execute twice. So if the caller wants exactly-once behav-
ior, it needs to be sure that a transaction did not and will not commit before it’s safe to resubmit the request to 
run the transaction.

Although these seem like unsolvable problems, they can actually be solved using persistent queues, which 
we’ll describe in some detail in chapter 4.

T1: Start
  read/write database
  . . .
  display results
  . . .
  error detected
    If error then Abort

T2: Start
     display form
     . . .
     get input from display
     . . .
   Commit

User sees results

User provides input

Figure 1.4

reading uncommitted results. The user read the uncommitted results of transaction T1 and fed them as input to 
transaction T2. Since T1 aborts, the input to T2 is incorrect.

T1: Start
  . . .
    Commit

Display results

System crashes, so user 
never sees the results.

Figure 1.5

displaying results after commits. This solves the problem of Figure 1.4, but if the transaction crashes before displaying 
the results, the results are lost forever.
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Compensating Transactions
commitment is an irrevocable action. Once a transaction is committed, it can no longer be aborted. People 
do make mistakes, of course. So it may turn out later that it was a mistake to have executed a transaction that 
committed. At this point, the only course of action is to run another transaction that reverses the effect of the 
one that committed. This is called a compensating transaction. For example, if a deposit transaction was in 
error, then one can later run a withdrawal transaction that reverses its effect.

Sometimes, a perfect compensation is impossible, because the transaction performed some irreversible act. 
For example, it may have caused a paint gun to spray-paint a part the wrong color, and the part is long gone 
from the paint gun’s work area when the error is detected. In this case, the compensating transaction may be to 
record the error in a database and send an e-mail message to someone who can take appropriate action.

Virtually any transaction can be executed incorrectly. So a well-designed TP application should include a 
compensating transaction type for every type of transaction.

Multistep Business Processes
Some business activities do not execute as a single transaction. For example, the activity of recording an order 
typically executes in a separate transaction from the one that processes the order. Since recording an order is 
relatively simple, the system can give excellent response time to the person who entered the order. The process-
ing of the order usually requires several time-consuming activities that may require multiple transactions, such 
as checking the customer’s credit, forwarding the order to a warehouse that has the requested goods in stock, 
and fulfilling the order by picking, packing, and shipping it.

Even though the business process executes as multiple transactions, the user may still want atomicity. Since 
multiple transactions are involved, this often requires compensating transactions. For example, if an order is 
accepted by the system in one transaction, but later on another transaction determines that the order can’t be ful-
filled, then a compensating transaction is needed to reverse the effect of the transaction that accepted the order. 
To avoid an unhappy customer, this often involves the universal compensating transaction, namely, an apology 
and a free gift certificate. It might also involve offering the customer a choice of either cancelling or telling the 
retailer to hold the order until the requested items have been restocked.

Start
     Record withdrawal
     Dispense money

Commit

Start
     Record withdrawal
Commit

Dispense money

Teller Machine 
Transaction 1

System crashes and
transaction aborts,
but money is dispensed.
(Bank is unhappy.)

Transaction commits,
then the system crashes,
so the money is not dispensed.
(Customer is unhappy.)

Teller Machine 
Transaction 2

Figure 1.6

The Problem of getting all-or-nothing behavior with real-World Operations. Whether the program dispenses money before 
or after it commits, it’s possible that only one of the operations executes: dispense the money or record the withdrawal.



Transactional middleware can help manage the execution of multistep business processes. For example, it 
can keep track of the state of a multistep process, so if the process is unable to complete then the middleware 
can invoke compensating transactions for the steps that have already executed. These functions and others are 
discussed in chapter 5, Business Process Management.

consistency

A second property of transactions is consistency—a transaction program should maintain the consistency of 
the database. That is, if you execute the transaction all by itself on a database that’s initially consistent, then 
when the transaction finishes executing the database is again consistent.

By consistent, we mean “internally consistent.” In database terms, this means that the database at least satis-
fies all its integrity constraints. There are several kinds of integrity constraints that database systems can typically 
maintain:

n All primary key values are unique (e.g., no two employee records have the same employee number).
n The database has referential integrity, meaning that records reference only objects that exist (e.g., the Part 

record and customer record that are referenced by an Order record really exist).
n certain data values are in a particular range (e.g., age is less than 120 and social security number is not null).

There are other kinds of integrity constraints that database systems typically cannot maintain but may nev-
ertheless be important, such as the following:

n The sum of expenses in each department is less than or equal to the department’s budget.
n The salary of an employee is bounded by the salary range of the employee’s job level.
n The salary of an employee cannot decrease unless the employee is demoted to a lower job level.

Ensuring that transactions maintain the consistency of the database is good programming practice. However, 
unlike atomicity, isolation, and durability, consistency is a responsibility shared between transaction programs 
and the TP system that executes those programs. That is, a TP system ensures that transactions are atomic, 
isolated, and durable, whether or not they are programmed to preserve consistency. Thus, strictly speaking, the 
AcID test for transaction systems is a bit too strong, because the TP system does its part for the c in AcID 
only by guaranteeing AID. It’s the application programmer’s responsibility to ensure the transaction program 
preserves consistency.

There are consistency issues that reach out past the TP system and into the physical world that the TP 
application describes. An example is the constraint that the number of physical items in inventory equals the 
number of items on the warehouse shelf. This constraint depends on actions in the physical world, such as cor-
rectly reporting the restocking and shipment of items in the warehouse. Ultimately, this is what the enterprise 
regards as consistency.

isolation

The third property of a transaction is called isolation. We say that a set of transactions is isolated if the effect 
of the system running them is the same as if the system ran them one at a time. The technical definition of iso-
lation is serializability. An execution is serializable (meaning isolated) if its effect is the same as running the 
transactions serially, one after the next, in sequence, with no overlap in executing any two of them. This has 
the same effect as running the transactions one at a time.

A classic example of a non-isolated execution is a banking system, where two transactions each try to with-
draw the last $100 in an account. If both transactions read the account balance before either of them updates it, 
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then both transactions will determine there’s enough money to satisfy their requests, and both will withdraw the 
last $100. clearly, this is the wrong result. Moreover, it isn’t a serializable result. In a serial execution, only the 
first transaction to execute would be able to withdraw the last $100. The second one would find an empty account.

Notice that isolation is different from atomicity. In the example, both transactions executed completely, so 
they were atomic. However, they were not isolated and therefore produced undesirable behavior.

If the execution is serializable, then from the point of view of an end-user who submits a request to run a 
transaction, the system looks like a standalone system that’s running that transaction all by itself. Between the 
time he or she runs two transactions, other transactions from other users may run. But during the period that the 
system is processing that one user’s transaction, the user has the illusion that the system is doing no other work. 
This is only an illusion. It’s too inefficient for the system to actually run transactions serially, because there is a 
lot of internal parallelism in the system that must be exploited by running transactions concurrently.

If each transaction preserves consistency, then any serial execution (i.e., sequence) of such transactions pre-
serves consistency. Since each serializable execution is equivalent to a serial execution, a serializable execution 
of the transactions will preserve database consistency too. It is the combination of transaction consistency and 
isolation that ensures that the execution of a set of transactions preserves database consistency.

The database typically sets locks on data accessed by each transaction. The effect of setting the locks is to 
make the execution appear to be serial. In fact, internally, the system is running transactions in parallel, but 
through this locking mechanism the system gives the illusion that the transactions are running serially, one after 
the next. In chapter 6, we will describe those mechanisms in more detail and present the rather subtle argument 
why locking actually produces serializable executions.

A common misconception is that serializability isn’t important because the database system will maintain 
consistency by enforcing integrity constraints. However, as we saw in the previous section on consistency, there 
are many consistency constraints that database systems can’t enforce. Moreover, sometimes users don’t tell the 
database system to enforce certain constraints because they degrade performance. The last line of defense is 
that the transaction program itself maintains consistency and that the system guarantees serializability.

durability

The fourth property of a transaction is durability. Durability means that when a transaction completes execut-
ing, all its updates are stored in stable storage; that is, storage that will survive the failure of power or the 
operating system. Today, stable storage (also called nonvolatile or persistent storage) typically consists of 
magnetic disk drives, though solid-state disks that use flash memory are making inroads as a viable alternative. 
Even if the transaction program fails, or the operating system fails, once the transaction has committed, its 
results are durably stored on stable storage and can be found there after the system recovers from the failure.

Durability is important because each transaction usually is providing a service to the user that amounts 
to a contract between the user and the enterprise that is providing the service. For example, if you’re moving 
money from one account to another, once you get a reply from the transaction saying that it executed, you 
expect that the result is permanent. It’s a legal agreement between the user and the system that the money has 
been moved between these two accounts. So it’s essential that the transaction actually makes sure that the 
updates are stored on some stable storage device, to ensure that the updates cannot possibly be lost after the 
transaction finishes executing. Moreover, the durability of the result must be maintained for a long period, until 
it is explicitly overwritten or deleted by a later transaction. For example, even if a checking account is unused 
for several years, the owner expects to find her money there the next time she accesses it.

The durability property usually is obtained by having the TP system append a copy of all the transaction’s 
updates to a log file while the transaction program is running. When the transaction program issues the com-
mit operation, the system first ensures that all the records written to the log file are out on stable storage, and then 



returns to the transaction program, indicating that the transaction has indeed committed and that the results are 
durable. The updates may be written to the database right away, or they may be written a little later. However, if the 
system fails after the transaction commits and before the updates go to the database, then after the system recovers 
from the failure it must repair the database. To do this, it reads the log and checks that each update by a commit-
ted transaction actually made it to the database. If not, it reapplies the update to the database. When this recovery 
activity is complete, the system resumes normal operation. Thus, after the system recovers, any new transaction 
will read a database state that includes all the updates of transactions that committed before the failure (as well as 
those that committed after the recovery). We describe log-based recovery algorithms in chapter 7.

1.4  TWO-Phase cOMMiT
When a transaction updates data on two or more database systems, we still have to ensure the atomicity property, 
namely, that either both database systems durably install the updates or neither does. This is challenging, because 
the database systems can independently fail and recover. This is certainly a problem when the database systems 
reside on different nodes of a distributed system. But it can even be a problem on a single machine if the database 
systems run as server processes with private storage since the processes can fail independently. The solution is a 
protocol called two-phase commit (2PC), which is executed by a module called the transaction manager.

The crux of the problem is that a transaction can commit its updates on one database system, but a second 
database system can fail before the transaction commits there too. In this case, when the failed system recov-
ers, it must be able to commit the transaction. To commit the transaction, the recovering system must have a 
copy of the transaction’s updates that executed there. Since a system can lose the contents of main memory 
when it fails, it must store a durable copy of the transaction’s updates before it fails, so it will have them after 
it recovers. This line of reasoning leads to the essence of two-phase commit: Each database system accessed 
by a transaction must durably store its portion of the transaction’s updates before the transaction commits any-
where. That way, if a system S fails after the transaction commits at another system S but before the transac-
tion commits at S, then the transaction can commit at S after S recovers (see Figure 1.7).

New York System

Update X
Commit

a.  Without two-phase commit.  The 
  transaction updates X and Y, but
    the failure causes the update to 
    Y to be lost.

b.  With two-phase commit.  The London
   system durably saved the update to Y,
   so it can commit after it recovers.

London System

Update Y
System fails
. . .
System recovers

The system lost the update to
Y when it failed, so it can’t
commit the transaction after
it recovers.

Since the system saved the
update to disk before it failed,
it can commit the transaction
after it recovers.

New York System

Update X
Write X to disk
Commit

London System

Update Y
Write Y to disk
System fails
. . .
System recovers

Figure 1.7

how Two-Phase commit ensures atomicity. With two-phase commit, each system durably stores its updates before the 
transaction commits, so it can commit the transaction when it recovers.
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To understand two-phase commit, it helps to visualize the overall architecture in which the transaction 
manager operates. The standard model, shown in Figure 1.8, was introduced by IBM’s cIcS and popularized 
by Oracle’s Tuxedo and X/Open (now part of The Open Group, see chapter 10). In this model, the transaction 
manager talks to applications, resource managers, and other transaction managers. The concept of “resource” 
includes databases, queues, files, messages, and other shared objects that can be accessed within a transaction. 
Each resource manager offers operations that must execute only if the transaction that called the operations 
commits.

The transaction manager processes the basic transaction operations for applications: Start, commit, and 
Abort. An application calls Start to begin executing a new transaction. It calls commit to ask the transaction 
manager to commit the transaction. It calls Abort to tell the transaction manager to abort the transaction.

The transaction manager is primarily a bookkeeper that keeps track of transactions in order to ensure ato-
micity when more than one resource is involved. Typically, there’s one transaction manager on each node of a 
distributed computer system. When an application issues a Start operation, the transaction manager dispenses a 
unique ID for the transaction called a transaction identifier. During the execution of the transaction, it keeps 
track of all the resource managers that the transaction accesses. This requires some cooperation with the appli-
cation, resource managers, and communication system. Whenever the transaction accesses a new resource 
manager, somebody has to tell the transaction manager. This is important because when it comes time to com-
mit the transaction, the transaction manager has to know all the resource managers to talk to in order to execute 
the two-phase commit protocol.

When a transaction program finishes execution and issues the commit operation, that commit operation 
goes to the transaction manager, which processes the operation by executing the two-phase commit protocol. 
Similarly, if the transaction manager receives an abort operation, it tells the resource managers to undo all the 
transaction’s updates; that is, to abort the transaction at each resource manager. Thus, each resource manager 
must understand the concept of transaction, in the sense that it undoes or permanently installs the transaction’s 
updates depending on whether the transaction aborts or commits.

When running two-phase commit, the transaction manager sends out two rounds of messages—one for each 
phase of the commitment activity. In the first round of messages it tells all the resource managers to prepare to 
commit by writing a copy of the results of the transaction to stable storage, but not actually to commit the trans-
action. At this point, the resource managers are said to be prepared to commit. When the transaction manager 
gets acknowledgments back from all the resource managers, it knows that the whole transaction has been pre-
pared. That is, it knows that all resource managers stored a durable copy of the transaction’s updates but none 
of them have committed the transaction. So it sends a second round of messages to tell the resource managers 
to actually commit. Figure 1.9 gives an example execution of two-phase commit with two resource managers 
involved.

Application Program

Resource Manager
Transaction Manager

Figure 1.8

X /Open Transaction Model (Xa). The transaction manager processes Start, Commit, and Abort. It talks to resource 
managers to run two-phase commit.



Two-phase commit avoids the problem in Figure 1.7(a) because all resource managers have a durable copy 
of the transaction’s updates before any of them commit. Therefore, even if a system fails during the commitment 
activity, as the London system did in the figure, it can commit the transaction after it recovers. However, to make 
this all work, the protocol must handle every possible failure and recovery scenario. For example, in Figure 
1.7(b), it must tell the London system to commit the transaction. The details of how two-phase commit handles 
all these scenarios is described in chapter 8.

Two-phase commit is required whenever a transaction accesses two or more resource managers. Thus, one 
key question that designers of TP applications must answer is whether or not to distribute their transaction 
programs among multiple resources. Using two-phase commit adds overhead (due to two-phase commit mes-
sages), but the option to distribute can provide better scalability (adding more systems to increase capacity) 
and availability (since one system can fail while others remain operational).

1.5  TransacTiOn PrOcessing PerFOrMance
Performance is a critical aspect of TP systems. No one likes waiting more than a few seconds for an automated 
teller machine to dispense cash or for a hotel web site to accept a reservation request. So response time to end-users 
is one important measure of TP system performance. companies that rely on TP systems, such as banks, airlines, 
and commercial web sites, also want to get the most transaction throughput for the money they invest in a TP sys-
tem. They also care about system scalability; that is, how much they can grow their system as their business grows.

It’s very challenging to configure a TP system to meet response time and throughput requirements at mini-
mum cost. It requires choosing the number of systems, how much storage capacity they’ll have, which process-
ing and database functions are assigned to each system, and how the systems are connected to displays and to 
each other. Even if you know the performance of the component products being assembled, it’s hard to predict 
how the overall system will perform. Therefore, users and vendors implement benchmarks to obtain guidance 
on how to configure systems and to compare competing products.

Vendor benchmarks are defined by an independent consortium called the Transaction Processing Performance 
council (TPc; www.tpc.org). The benchmarks enable apples-to-apples comparisons of different vendors’ hardware 
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Figure 1.9

The Two-Phase commit Protocol. In Phase One, every resource manager durably saves the transaction’s updates before 
replying “I am Prepared.” Thus, all resource managers have durably stored the transaction’s updates before any of 
them commits in phase two.
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