
interface definition, the caller specifies the data types it would like to receive. This flexibility makes it easier
for diverse kinds of callers to invoke the service.

REST/HTTP is popular for its speed and simplicity. Web Services require parameters in SOAP messages to
be represented in XML, which is expensive to parse. XML is self-describing and highly interoperable, but these
benefits are not always important, for example, for simple services. A very simple interface makes it easier and
faster to manipulate in limited languages such as JavaScript.

hardware architecture

The computers that run these programs have a range of processing power. A display device could be a character-
at-a-time terminal, a handheld device, a low-end Pc, or a powerful workstation. Front-end programs, request
controllers, transaction servers, and database systems could run on any kind of server machine, ranging from a
low-end server machine, to a high-end multiprocessor mainframe, to a distributed system. A distributed system
could consist of many computers, localized within a machine room or campus or geographically dispersed in a
region or worldwide.

Some of these systems are quite small, such as a few display devices connected to a small machine on a Pc
Local Area Network (LAN). Big TP systems tend to be enterprise-wide or Internet-wide, such as airline and
financial systems, Internet retailers, and auction sites. The big airline systems have on the order of 100,000 dis-
play devices (terminals, ticket printers, and boarding-pass printers) and thousands of disk drives, and execute
thousands of transactions per second at their peak load. The biggest Internet systems have hundreds of millions
of users, with tens of millions of them actively using the system at any one time.

Given this range of capabilities of computers that are used for TP, we need some terminology to distinguish
among them. We use standard words for them, but in some cases with narrower meanings than is common in
other contexts.

We define a machine to be a computer that is running a single operating system image. It could use a single-
core or multicore processor, or it could be a shared-memory multiprocessor. Or it might be a virtual machine
that is sharing the underlying hardware with other virtual machines. A server machine is a machine that exe-
cutes programs on behalf of client programs that typically execute on other computers. A system is a set of one
or more machines that work together to perform some function. For example, a TP system is a system that sup-
ports one or more TP applications. A node (of a network) is a system that is accessed by other machines as if it
were one machine. It may consist of several machines, each with its own network address. However, the system
as a whole also has a network address, which is usually how other machines access it.

A server process is an operating system process, P, that executes programs on behalf of client programs exe-
cuting in other processes on the same or different machines as the one where P is running. We often use the word
“server” instead of “server machine” or “server process” when the meaning is obvious from context.

1.3  aTOMiciTy, cOnsisTency, isOlaTiOn, and durabiliTy
There are four critical properties of transactions that we need to understand at the outset:

n Atomicity: The transaction executes completely or not at all.
n consistency: The transaction preserves the internal consistency of the database.
n Isolation: The transaction executes as if it were running alone, with no other transactions.
n Durability: The transaction’s results will not be lost in a failure.

1.3  Atomicity, Consistency, Isolation, and Durability    �

10    CHAPTER 1  Introduction

This leads to an entertaining acronym, AcID. People often say that a TP system executes AcID transac-
tions, in which case the TP system has “passed the AcID test.” Let’s look at each of these properties in turn and
examine how they relate to each other.

atomicity

First, a transaction needs to be atomic (or all-or-nothing), meaning that it executes completely or not at all.
There must not be any possibility that only part of a transaction program is executed.

For example, suppose we have a transaction program that moves $100 from account A to account B. It takes
$100 out of account A and adds it to account B. When this runs as a transaction, it has to be atomic—either both
or neither of the updates execute. It must not be possible for it to execute one of the updates and not the other.

The TP system guarantees atomicity through database mechanisms that track the execution of the transac-
tion. If the transaction program should fail for some reason before it completes its work, the TP system will
undo the effects of any updates that the transaction program has already done. Only if it gets to the very end and
performs all of its updates will the TP system allow the updates to become a permanent part of the database.

If the TP system fails, then as part of its recovery actions it undoes the effects of all updates by all transac-
tions that were executing at the time of the failure. This ensures the database is returned to a known state fol-
lowing a failure, reducing the requirement for manual intervention during restart.

By using the atomicity property, we can write a transaction program that emulates an atomic business trans-
action, such as a bank account withdrawal, a flight reservation, or a sale of stock shares. Each of these business
actions requires updating multiple data items. By implementing the business action by a transaction, we ensure
that either all the updates are performed or none are.

The successful completion of a transaction is called commit. The failure of a transaction is called abort.

Handling Real-World Operations
During its execution, a transaction may produce output that is displayed back to the user. However, since the
transaction program is all-or-nothing, until the transaction actually commits, any results that the transaction
might display to the user should not be taken seriously, because it’s still possible that the transaction will abort.
Anything displayed on the display device could be wiped out in the database on abort.

Thus, any value that the transaction displays may be used by the end-user only if the transaction commits
and not if the transaction aborts. This requires some care on the part of users (see Figure 1.4). If the system
actually displays some of the results of a transaction before the transaction commits, and if the user utilizes
any of these results as input to another transaction, then we have a problem. If the first transaction aborts and
the second transaction commits, then the all-or-nothing property has been broken. That is, some of the results
of the first transaction will be reflected in the results of the second transaction. But other results of the first
transaction, such as its database updates, were not performed because the transaction aborted.

Some systems solve this problem simply by not displaying the result of a transaction until after the transac-
tion commits, so the user can’t inadvertently make use of the transaction’s output and then have it subsequently
abort. But this too has its problems (see Figure 1.5): If the transaction commits before displaying any of its
results, and the system crashes before the transaction actually displays any of the results, then the user won’t
get a chance to see the output. Again, the transaction is not all-or-nothing; it executed all its database updates
before it committed, but did not display its output.

We can make the problem more concrete by looking at it in the context of an automated teller machine
(ATM) (see Figure 1.6). The output, for example, may be an operation that dispenses $100 from the ATM. If
the system dispenses the $100 before the transaction commits, and the transaction ends up aborting, then the

bank gives up the money but does not record that fact in the database. If the transaction commits and the sys-
tem fails before it dispenses the $100, then the database says the $100 was given to the customer, but in fact
the customer never got the money. In both cases, the transaction’s behavior is not all-or-nothing.

A closely-related problem is that of ensuring that each transaction executes exactly once. To do this, the
transaction needs to send an acknowledgment to its caller, such as sending a message to the ATM to dispense
money, if and only if it commits. However, sending this acknowledgment is not enough to guarantee exactly-
once behavior because the caller cannot be sure how to interpret the absence of an acknowledgment. If the caller
fails to receive an acknowledgment, it might be because the transaction aborted, in which case the caller needs to
resubmit a request to run a transaction (to ensure the transaction executes once). Or it might be that the transac-
tion committed but the acknowledgment got lost, in which case the caller must not resubmit a request to run the
transaction because that would cause the transaction to execute twice. So if the caller wants exactly-once behav-
ior, it needs to be sure that a transaction did not and will not commit before it’s safe to resubmit the request to
run the transaction.

Although these seem like unsolvable problems, they can actually be solved using persistent queues, which
we’ll describe in some detail in chapter 4.

T1: Start
 read/write database
 . . .
 display results
 . . .
 error detected
 If error then Abort

T2: Start
 display form
 . . .
 get input from display
 . . .
 Commit

User sees results

User provides input

Figure 1.4

reading uncommitted results. The user read the uncommitted results of transaction T1 and fed them as input to 
transaction T2. Since T1 aborts, the input to T2 is incorrect.

T1: Start
 . . .
 Commit

Display results

System crashes, so user
never sees the results.

Figure 1.5

displaying results after commits. This solves the problem of Figure 1.4, but if the transaction crashes before displaying 
the results, the results are lost forever.

1.3  Atomicity, Consistency, Isolation, and Durability    11

1�    CHAPTER 1  Introduction

Compensating Transactions
commitment is an irrevocable action. Once a transaction is committed, it can no longer be aborted. People
do make mistakes, of course. So it may turn out later that it was a mistake to have executed a transaction that
committed. At this point, the only course of action is to run another transaction that reverses the effect of the
one that committed. This is called a compensating transaction. For example, if a deposit transaction was in
error, then one can later run a withdrawal transaction that reverses its effect.

Sometimes, a perfect compensation is impossible, because the transaction performed some irreversible act.
For example, it may have caused a paint gun to spray-paint a part the wrong color, and the part is long gone
from the paint gun’s work area when the error is detected. In this case, the compensating transaction may be to
record the error in a database and send an e-mail message to someone who can take appropriate action.

Virtually any transaction can be executed incorrectly. So a well-designed TP application should include a
compensating transaction type for every type of transaction.

Multistep Business Processes
Some business activities do not execute as a single transaction. For example, the activity of recording an order
typically executes in a separate transaction from the one that processes the order. Since recording an order is
relatively simple, the system can give excellent response time to the person who entered the order. The process-
ing of the order usually requires several time-consuming activities that may require multiple transactions, such
as checking the customer’s credit, forwarding the order to a warehouse that has the requested goods in stock,
and fulfilling the order by picking, packing, and shipping it.

Even though the business process executes as multiple transactions, the user may still want atomicity. Since
multiple transactions are involved, this often requires compensating transactions. For example, if an order is
accepted by the system in one transaction, but later on another transaction determines that the order can’t be ful-
filled, then a compensating transaction is needed to reverse the effect of the transaction that accepted the order.
To avoid an unhappy customer, this often involves the universal compensating transaction, namely, an apology
and a free gift certificate. It might also involve offering the customer a choice of either cancelling or telling the
retailer to hold the order until the requested items have been restocked.

Start
 Record withdrawal
 Dispense money

Commit

Start
 Record withdrawal
Commit

Dispense money

Teller Machine
Transaction 1

System crashes and
transaction aborts,
but money is dispensed.
(Bank is unhappy.)

Transaction commits,
then the system crashes,
so the money is not dispensed.
(Customer is unhappy.)

Teller Machine
Transaction 2

Figure 1.6

The Problem of getting all-or-nothing behavior with real-World Operations. Whether the program dispenses money before 
or after it commits, it’s possible that only one of the operations executes: dispense the money or record the withdrawal.

Transactional middleware can help manage the execution of multistep business processes. For example, it
can keep track of the state of a multistep process, so if the process is unable to complete then the middleware
can invoke compensating transactions for the steps that have already executed. These functions and others are
discussed in chapter 5, Business Process Management.

consistency

A second property of transactions is consistency—a transaction program should maintain the consistency of
the database. That is, if you execute the transaction all by itself on a database that’s initially consistent, then
when the transaction finishes executing the database is again consistent.

By consistent, we mean “internally consistent.” In database terms, this means that the database at least satis-
fies all its integrity constraints. There are several kinds of integrity constraints that database systems can typically
maintain:

n All primary key values are unique (e.g., no two employee records have the same employee number).
n The database has referential integrity, meaning that records reference only objects that exist (e.g., the Part

record and customer record that are referenced by an Order record really exist).
n certain data values are in a particular range (e.g., age is less than 120 and social security number is not null).

There are other kinds of integrity constraints that database systems typically cannot maintain but may nev-
ertheless be important, such as the following:

n The sum of expenses in each department is less than or equal to the department’s budget.
n The salary of an employee is bounded by the salary range of the employee’s job level.
n The salary of an employee cannot decrease unless the employee is demoted to a lower job level.

Ensuring that transactions maintain the consistency of the database is good programming practice. However,
unlike atomicity, isolation, and durability, consistency is a responsibility shared between transaction programs
and the TP system that executes those programs. That is, a TP system ensures that transactions are atomic,
isolated, and durable, whether or not they are programmed to preserve consistency. Thus, strictly speaking, the
AcID test for transaction systems is a bit too strong, because the TP system does its part for the c in AcID
only by guaranteeing AID. It’s the application programmer’s responsibility to ensure the transaction program
preserves consistency.

There are consistency issues that reach out past the TP system and into the physical world that the TP
application describes. An example is the constraint that the number of physical items in inventory equals the
number of items on the warehouse shelf. This constraint depends on actions in the physical world, such as cor-
rectly reporting the restocking and shipment of items in the warehouse. Ultimately, this is what the enterprise
regards as consistency.

isolation

The third property of a transaction is called isolation. We say that a set of transactions is isolated if the effect
of the system running them is the same as if the system ran them one at a time. The technical definition of iso-
lation is serializability. An execution is serializable (meaning isolated) if its effect is the same as running the
transactions serially, one after the next, in sequence, with no overlap in executing any two of them. This has
the same effect as running the transactions one at a time.

A classic example of a non-isolated execution is a banking system, where two transactions each try to with-
draw the last $100 in an account. If both transactions read the account balance before either of them updates it,

1.3  Atomicity, Consistency, Isolation, and Durability    1�

1�    CHAPTER 1  Introduction

then both transactions will determine there’s enough money to satisfy their requests, and both will withdraw the
last $100. clearly, this is the wrong result. Moreover, it isn’t a serializable result. In a serial execution, only the
first transaction to execute would be able to withdraw the last $100. The second one would find an empty account.

Notice that isolation is different from atomicity. In the example, both transactions executed completely, so
they were atomic. However, they were not isolated and therefore produced undesirable behavior.

If the execution is serializable, then from the point of view of an end-user who submits a request to run a
transaction, the system looks like a standalone system that’s running that transaction all by itself. Between the
time he or she runs two transactions, other transactions from other users may run. But during the period that the
system is processing that one user’s transaction, the user has the illusion that the system is doing no other work.
This is only an illusion. It’s too inefficient for the system to actually run transactions serially, because there is a
lot of internal parallelism in the system that must be exploited by running transactions concurrently.

If each transaction preserves consistency, then any serial execution (i.e., sequence) of such transactions pre-
serves consistency. Since each serializable execution is equivalent to a serial execution, a serializable execution
of the transactions will preserve database consistency too. It is the combination of transaction consistency and
isolation that ensures that the execution of a set of transactions preserves database consistency.

The database typically sets locks on data accessed by each transaction. The effect of setting the locks is to
make the execution appear to be serial. In fact, internally, the system is running transactions in parallel, but
through this locking mechanism the system gives the illusion that the transactions are running serially, one after
the next. In chapter 6, we will describe those mechanisms in more detail and present the rather subtle argument
why locking actually produces serializable executions.

A common misconception is that serializability isn’t important because the database system will maintain
consistency by enforcing integrity constraints. However, as we saw in the previous section on consistency, there
are many consistency constraints that database systems can’t enforce. Moreover, sometimes users don’t tell the
database system to enforce certain constraints because they degrade performance. The last line of defense is
that the transaction program itself maintains consistency and that the system guarantees serializability.

durability

The fourth property of a transaction is durability. Durability means that when a transaction completes execut-
ing, all its updates are stored in stable storage; that is, storage that will survive the failure of power or the
operating system. Today, stable storage (also called nonvolatile or persistent storage) typically consists of
magnetic disk drives, though solid-state disks that use flash memory are making inroads as a viable alternative.
Even if the transaction program fails, or the operating system fails, once the transaction has committed, its
results are durably stored on stable storage and can be found there after the system recovers from the failure.

Durability is important because each transaction usually is providing a service to the user that amounts
to a contract between the user and the enterprise that is providing the service. For example, if you’re moving
money from one account to another, once you get a reply from the transaction saying that it executed, you
expect that the result is permanent. It’s a legal agreement between the user and the system that the money has
been moved between these two accounts. So it’s essential that the transaction actually makes sure that the
updates are stored on some stable storage device, to ensure that the updates cannot possibly be lost after the
transaction finishes executing. Moreover, the durability of the result must be maintained for a long period, until
it is explicitly overwritten or deleted by a later transaction. For example, even if a checking account is unused
for several years, the owner expects to find her money there the next time she accesses it.

The durability property usually is obtained by having the TP system append a copy of all the transaction’s
updates to a log file while the transaction program is running. When the transaction program issues the com-
mit operation, the system first ensures that all the records written to the log file are out on stable storage, and then

returns to the transaction program, indicating that the transaction has indeed committed and that the results are
durable. The updates may be written to the database right away, or they may be written a little later. However, if the
system fails after the transaction commits and before the updates go to the database, then after the system recovers
from the failure it must repair the database. To do this, it reads the log and checks that each update by a commit-
ted transaction actually made it to the database. If not, it reapplies the update to the database. When this recovery
activity is complete, the system resumes normal operation. Thus, after the system recovers, any new transaction
will read a database state that includes all the updates of transactions that committed before the failure (as well as
those that committed after the recovery). We describe log-based recovery algorithms in chapter 7.

1.4  TWO-Phase cOMMiT
When a transaction updates data on two or more database systems, we still have to ensure the atomicity property,
namely, that either both database systems durably install the updates or neither does. This is challenging, because
the database systems can independently fail and recover. This is certainly a problem when the database systems
reside on different nodes of a distributed system. But it can even be a problem on a single machine if the database
systems run as server processes with private storage since the processes can fail independently. The solution is a
protocol called two-phase commit (2PC), which is executed by a module called the transaction manager.

The crux of the problem is that a transaction can commit its updates on one database system, but a second
database system can fail before the transaction commits there too. In this case, when the failed system recov-
ers, it must be able to commit the transaction. To commit the transaction, the recovering system must have a
copy of the transaction’s updates that executed there. Since a system can lose the contents of main memory
when it fails, it must store a durable copy of the transaction’s updates before it fails, so it will have them after
it recovers. This line of reasoning leads to the essence of two-phase commit: Each database system accessed
by a transaction must durably store its portion of the transaction’s updates before the transaction commits any-
where. That way, if a system S fails after the transaction commits at another system S but before the transac-
tion commits at S, then the transaction can commit at S after S recovers (see Figure 1.7).

New York System

Update X
Commit

a. Without two-phase commit. The
 transaction updates X and Y, but
 the failure causes the update to
 Y to be lost.

b. With two-phase commit. The London
 system durably saved the update to Y,
 so it can commit after it recovers.

London System

Update Y
System fails
. . .
System recovers

The system lost the update to
Y when it failed, so it can’t
commit the transaction after
it recovers.

Since the system saved the
update to disk before it failed,
it can commit the transaction
after it recovers.

New York System

Update X
Write X to disk
Commit

London System

Update Y
Write Y to disk
System fails
. . .
System recovers

Figure 1.7

how Two-Phase commit ensures atomicity. With two-phase commit, each system durably stores its updates before the 
transaction commits, so it can commit the transaction when it recovers.

1.4  Two-Phase Commit    1�

1�    CHAPTER 1  Introduction

To understand two-phase commit, it helps to visualize the overall architecture in which the transaction
manager operates. The standard model, shown in Figure 1.8, was introduced by IBM’s cIcS and popularized
by Oracle’s Tuxedo and X/Open (now part of The Open Group, see chapter 10). In this model, the transaction
manager talks to applications, resource managers, and other transaction managers. The concept of “resource”
includes databases, queues, files, messages, and other shared objects that can be accessed within a transaction.
Each resource manager offers operations that must execute only if the transaction that called the operations
commits.

The transaction manager processes the basic transaction operations for applications: Start, commit, and
Abort. An application calls Start to begin executing a new transaction. It calls commit to ask the transaction
manager to commit the transaction. It calls Abort to tell the transaction manager to abort the transaction.

The transaction manager is primarily a bookkeeper that keeps track of transactions in order to ensure ato-
micity when more than one resource is involved. Typically, there’s one transaction manager on each node of a
distributed computer system. When an application issues a Start operation, the transaction manager dispenses a
unique ID for the transaction called a transaction identifier. During the execution of the transaction, it keeps
track of all the resource managers that the transaction accesses. This requires some cooperation with the appli-
cation, resource managers, and communication system. Whenever the transaction accesses a new resource
manager, somebody has to tell the transaction manager. This is important because when it comes time to com-
mit the transaction, the transaction manager has to know all the resource managers to talk to in order to execute
the two-phase commit protocol.

When a transaction program finishes execution and issues the commit operation, that commit operation
goes to the transaction manager, which processes the operation by executing the two-phase commit protocol.
Similarly, if the transaction manager receives an abort operation, it tells the resource managers to undo all the
transaction’s updates; that is, to abort the transaction at each resource manager. Thus, each resource manager
must understand the concept of transaction, in the sense that it undoes or permanently installs the transaction’s
updates depending on whether the transaction aborts or commits.

When running two-phase commit, the transaction manager sends out two rounds of messages—one for each
phase of the commitment activity. In the first round of messages it tells all the resource managers to prepare to
commit by writing a copy of the results of the transaction to stable storage, but not actually to commit the trans-
action. At this point, the resource managers are said to be prepared to commit. When the transaction manager
gets acknowledgments back from all the resource managers, it knows that the whole transaction has been pre-
pared. That is, it knows that all resource managers stored a durable copy of the transaction’s updates but none
of them have committed the transaction. So it sends a second round of messages to tell the resource managers
to actually commit. Figure 1.9 gives an example execution of two-phase commit with two resource managers
involved.

Application Program

Resource Manager
Transaction Manager

Figure 1.8

X /Open Transaction Model (Xa). The transaction manager processes Start, Commit, and Abort. It talks to resource 
managers to run two-phase commit.

Two-phase commit avoids the problem in Figure 1.7(a) because all resource managers have a durable copy
of the transaction’s updates before any of them commit. Therefore, even if a system fails during the commitment
activity, as the London system did in the figure, it can commit the transaction after it recovers. However, to make
this all work, the protocol must handle every possible failure and recovery scenario. For example, in Figure
1.7(b), it must tell the London system to commit the transaction. The details of how two-phase commit handles
all these scenarios is described in chapter 8.

Two-phase commit is required whenever a transaction accesses two or more resource managers. Thus, one
key question that designers of TP applications must answer is whether or not to distribute their transaction
programs among multiple resources. Using two-phase commit adds overhead (due to two-phase commit mes-
sages), but the option to distribute can provide better scalability (adding more systems to increase capacity)
and availability (since one system can fail while others remain operational).

1.5  TransacTiOn PrOcessing PerFOrMance
Performance is a critical aspect of TP systems. No one likes waiting more than a few seconds for an automated
teller machine to dispense cash or for a hotel web site to accept a reservation request. So response time to end-users
is one important measure of TP system performance. companies that rely on TP systems, such as banks, airlines,
and commercial web sites, also want to get the most transaction throughput for the money they invest in a TP sys-
tem. They also care about system scalability; that is, how much they can grow their system as their business grows.

It’s very challenging to configure a TP system to meet response time and throughput requirements at mini-
mum cost. It requires choosing the number of systems, how much storage capacity they’ll have, which process-
ing and database functions are assigned to each system, and how the systems are connected to displays and to
each other. Even if you know the performance of the component products being assembled, it’s hard to predict
how the overall system will perform. Therefore, users and vendors implement benchmarks to obtain guidance
on how to configure systems and to compare competing products.

Vendor benchmarks are defined by an independent consortium called the Transaction Processing Performance
council (TPc; www.tpc.org). The benchmarks enable apples-to-apples comparisons of different vendors’ hardware

Resource Manager
in New York

Resource Manager
in London

Resource Manager
in New York

Resource Manager
in London

Transaction Manager

1.
Pr

ep
ar

e
2.

I a
m

 p
re

pa
re

d 1. Prepare
2. I am

 prepared

3.
C

om
m

it
4.

O
K

3. C
om

m
it

4. O
K

Transaction Manager

Phase one Phase two

Figure 1.9

The Two-Phase commit Protocol. In Phase One, every resource manager durably saves the transaction’s updates before 
replying “I am Prepared.” Thus, all resource managers have durably stored the transaction’s updates before any of 
them commits in phase two.

1.5  Transaction Processing Performance    1�

www.tpc.org

