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Outline for Today

* Concurrency & Parallelism Basics
* Decomposition redux
* Measuring Parallel Performance
* Performance Tradeoffs
* Correctness and Performance
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Review: Game of Life

* Given a 2D Grid:
c v:(i,]) = F(vt_l(of all its neighbors))
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Domain decomposition



Domain decomposition

Each CPU gets part of the input



Domain decomposition

Each CPU gets part of the input * What would a functional decomposition look like?

* |ssues/obstacles with this domain decomposition?

CPUO
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Functional decomposition

CPU 0: CPU 1:
tmpij = F(vt-2(neighbors)) vt(i,j) = tmpi,
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Functional decomposition

Each CPU gets part of the per-cell work

CPU 0: CPU 1:
tmpij = F(vt-2(neighbors)) vt(i,j) = tmpi,
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Functional decomposition

Each CPU gets part of the per-cell work

CPU 0: CPU 1:
tmpij = F(vt-2(neighbors)) vt(i,j) = tmpi,

FIFO
Queue
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Domain decomposition

e Each CPU gets part of the input

Issues?

* Accessing Data

CPUO
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Can we access v(i+1, j) from CPU O

e ..asina “normal” serial program?

e Shared memory? Distributed?
Time to access v(i+1,j) == Time to access v(i-1,j) ?
Scalability vs Latency



Domain decomposition

e Each CPU gets part of the input

CPUO

CS380P

Issues?

Accessing Data
e Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
* Scalability vs Latency
Control
e Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
e Task Management Overhead
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Domain decomposition

e Each CPU gets part of the input

CPUO

CPU 1

Issues?

Accessing Data
* Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
e Scalability vs Latency
Control
e Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
* Task Management Overhead
Load Balance
Correctness
e order of reads and writes is non-deterministic
* synchronization is required to enforce the order
* Jocks, semaphores, barriers, conditionals....
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Load Balancing

* Slowest task determines performance



Load Balancing

* Slowest task determines performance

CPUO

Jf—

CPU 2
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CPU 1

CPU 3
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Load Balancing

* Slowest task determines performance

CPUO CPU 1

1+1

CPU 2 CPU 3
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Granularity



Granularity

Computation

G =

Communication



Granularity

* Fine-grain parallelism
* Gissmall
* Good load balancing
* Potentially high overhead

* Hard to get correct
Computation

G =

Communication e Coarse-grain parallelism
 Gislarge
* Load balancing is tough
* Low overhead
* Easier to get correct
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Performance: Amdahl’s law



Performance: Amdahl’s law

* Speedup is bound by serial component

e Split program serial time ( Tsprijgp = 1) into
* |deally parallelizable portion: A
* assuming perfect load balancing, identical speed, no overheads
* Cannot be parallelized (serial) portion: 1 — A4
* Parallel time:

T, +(1-4)

parallel — HCPUs

Tserial 1

Speedup(#CPUs) = =~
el _
parere #CPUs +(1—-4)




Performance: Amdahl’s law

Py Spf\f\l\llnu\ HP PR [ P HPY P gy B
*Sp . .
G serial run time
pee up — )
parallel run time
e #CPUS
Speedup(#CPUs) = Tseria _ v L
parallel + (1 _ A)

#CPUs



Amdahl’s law

X seconds
| |
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Amdahl’s law

X seconds

X/2 seconds X/2 seconds

| | | |
Serial Parallelizable
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Amdahl’s law

X seconds

X/2 seconds X/2 seconds

| | | |
Serial Parallelizable

|”

What makes something “serial” vs. parallelizable?
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Amdahl’s law

X/2 seconds X/2 seconds
| | | |

Serial Parallelizable

End to end time: X seconds
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Amdahl’s law

X/2 seconds
| |

Serial

End to end time: X seconds
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Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable

Serial

Parallelizable

End to end time: X seconds
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Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable
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Parallelizable
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Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable

Serial

Parallelizable

End to end time: (X/2 + X/4) = (3/4)X seconds
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Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable

Serial

Parallelizable

End to end time: (X/2 + X/4) = (3/4)X seconds

What is the “speedup” in this case?
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Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable

Serial

Parallelizable

End to end time: (X/2 + X/4) = (3/4)X seconds

What is the “speedup” in this case?

Speodun — serial runtime 1 _ 1 _ 1333
peeaup = parallel runtime A -

CS380P HCPUs +(1-4) Scalabiliyié'sgj?ctﬁlésgl_'s)
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Speedup exercise 8 CPUs

3 * X/4 seconds
X/4 seconds

l I I

Serial Parallelizable

End to end time: X seconds

CS380pP Scalability + Correctness 12
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l I
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X/4 seconds

l I

Serial

What is the “speedup” in this case?
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Speedup exercise

(3X/4)/8 seconds

X/4 seconds

Serial

U T©W T© T©W T©W W T© O

What is the “speedup” in this case?
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Speedup exercise

(3X/4)/8 seconds

X/4 seconds

Serial

U T©W T© T©W T©W W T© O

What is the “speedup” in this case?

serial run time 1 1
Speedup = =7 = = 2.91x

llel ti
CS380P paraliel rn ime #CPUs +(1-4) 5ca|abi|ity-+7c5{é3cn'ksll'-75) 12




Amdahl Action Zone
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Amdahl Action Zone

Percentage of parallel work
=50% —=75%
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Amdahl Action Zone

Percentage of parallel work
=50% =75% —90% 95% =—99%
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Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

* N =#CPUs, S = serial portion=1—-A
» Amdahl's law: Speedup(N) = %
5+

* Strong scaling: Speedup(N) calculated with total work fixed
* Solve same fixed size problem, #CPUs grows
* Fixed parallel portion = speedup stops increasing

* Gustafson's law: Speedup(N) = N + (N—1)-S

*  Weak scaling: Speedup(N) calculated with work-per-CPU fixed
* Add more CPUs = Add more work = granularity stays fixed

* Problem size grows: solve larger problems

* Consequence: speedup upper bound much greater

CS380P Scalability + Correctness
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Super-linear speedup

CS380pP Scalability + Correctness

Speedup

Superlinear

Sublinear
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Super-linear speedup

e Possible due to cache

* But usually just poor methodology

» Baseline: *best* serial algorithm
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Super-linear speedup

Speedup

e Possible due to cache

* But usually just poor methodology
Superlinear

» Baseline: *best* serial algorithm

Sublinear
* Example:
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Super-linear speedup

Speedup
* Possible due to cache i
[l
* But usually just poor methodology -
Superlinear
» Baseline: *best* serial algorithm
Sublinear

* Example:

* Efficient bubble sort takes:
* Parallel 40s
* Serial 150s

* Speedup = % = 3757

Processors

* NO!
* Serial quicksort runs in 30s
« = Speedup = 0.75

CS380P Scalability + Correctness 17



Concurrency and Correctness

If two threads execute this program concurrently,
how many different final values of X are there?

Initially, X == 0.

CS380P

Thread 1

void increment () ({
int temp = X;
temp = temp + 1;
X = temp;

Thread 2

void increment () {
int temp = X;
temp = temp + 1;
X = temp;

Scalability + Correctness
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Schedules/Interleavings

Model of concurrent execution
* Interleave statements from each thread into a single thread
* If any interleaving yields incorrect results, synchronization is needed

tmpl = X; tmp2 = X;
tmpl = tmpl + 1; tmp2 = tmp2 + 1;
X = tmpl; X = tmp2;




Schedules/Interleavings

Model of concurrent execution
* Interleave statements from each thread into a single thread
* If any interleaving yields incorrect results, synchronization is needed

Thread 1 Thread 2

/tmpl =
tmp2 X;
tmpl = X; N tmp2 X;

tmp2 = tmp2 + 1;
tmpl = tmpl + 1;_ Ltmpl = tmpl + 1; tmp2 = tmp2 + 1;
X = tmp2;

X = tmpl; —> X = tmpl;
X = thZ;/

\ 7]

If X==0 initially, X == 1 at the end. WRONG result!
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Locks fix this with Mutual Exclusion

void increment () {
lock.acquire() ;
int temp = X;
temp = temp + 1;
X = temp;
lock.release() ;

Mutual exclusion ensures only safe interleavings
e But it limits concurrency, and hence scalability/performance



Locks fix this with Mutual Exclusion

void increment () {
lock.acquire() ;
int temp = X;
temp = temp + 1;
X = temp;
lock.release() ;

Mutual exclusion ensures only safe interleavings
e But it limits concurrency, and hence scalability/performance

Is mutual exclusion a good abstraction?

y + Correctness
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Correctness conditions

while (1) {
Entry section
Critical section
Exit section
Non-critical section
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* Only one thread in the critical region
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e Safety

* Only one thread in the critical region

* Liveness
* Some thread that enters the entry section eventually enters the critical region
* Even if other thread takes forever in non-critical region
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Correctness conditions

e Safety

* Only one thread in the critical region

* Liveness
* Some thread that enters the entry section eventually enters the critical region
* Even if other thread takes forever in non-critical region

* Bounded waiting

* A thread that enters the entry section enters the critical section within some
bounded number of operations.

while (1) {
Entry section
Critical section
Exit section
Non-critical section



Correctness conditions

e Safety

* Only one thread in the critical region

* Liveness
* Some thread that enters the entry section eventually enters the critical region

* Even if other thread takes forever in non-critical region

* Ifathreadiisin entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is

granted :
while (1) {
Entry section
Critical section
Exit section
Non-critical section



Correctness conditions

» Safety :
* Only one thread in the critical region Theor_em:. Every property is a
combination of a safety property and a
* Liveness liveness property.
* Some thread that enters the entry section eventually enters the critical region -Bowen Alpern & Fred Schneider [1985]

https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

* Even if other thread takes forever in non-critical region

* Bounded waiting

. Al L | . | tical . e
boundednumberofoperations——— —— — — — — —————————

* Ifathreadiisin entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is

granted while (l) {
Entry section
Critical section
Exit section

Non-critical section
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Correctness conditions

» Safety :
* Only one thread in the critical region Theor_em:. Every property is a
combination of a safety property and a
* Liveness liveness property.
* Some thread that enters the entry section eventually enters the critical region -Bowen Alpern & Fred Schneider [1985]

. . N . s e el e e s e
* Even if other thread takes forever in non-critical region R e e

* Bounded waiting

. Al L | . | tical . e
boundednumberofoperations——— —— — — — — —————————

* Ifathreadiisin entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is

granted :
while (1) {

[ J
::: Critical section

[ )

Non-critical section
CS380P Scalability + Correctness 21

Mutex, spinlock, etc.
are ways to implement
these
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Let’s talk concurrency control

Consider a hash-table

00— -8 -0

1=—— B

2 =mmpp

3 =)

|
—={_J
4 = 000

5 ==t @0

CS380P

)
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Let’s talk concurrency control

thread T1

Consider a hash-table

ht.add({ ]);
ﬂ#."‘.—".
1 == g
2 # | if(ht.contains(E))
3 == (-0 ht.del(@D);
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Let’s talk concurrency control

thread T1 thread T2

Consider a hash-table

ht.add({ ]); ht.add({));
0 == G-
1 = 0
2D s | if(ht.contains(@@)) if(ht.contains(E))
3 == (DD ht.del(@®); ht.del(@B);
4 SN g B g B

5 ==t @0
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Let’s talk concurrency control

thread T1 thread T2

Consider a hash-table

00— -8 -0

1=—— B

2 =mmpp

3 == -0

4 =mep -0

5 ==t @0

CS380P

ht.add({ ]);

ht.add({_J);
if(ht.contains([))

if(ht.contains(E))

ht.del(@);
ht.del(E);
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Let’s talk concurrency control

thread T1 thread T2

Consider a hash-table

ht.add({ ]);

=3 &= == | ht.add({J);

1 == if(ht.contains (@) )

2 o | | if(ht.contains (8 ))

J
3 b (D) ht.del(@D);
4 =y 00— ht.del(.&

5 ==t @0
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Pessimistic concurrency control: coarse locks

Consider a hash-table

00— -8 -0

1=—— B

2 =mmpp

3 == -0

4 =mep -0

5 ==t @0

CS380P

thread T1

ht.add({ ]);

if(ht.contains(E))
ht.del(@);

Scalability + Correctness
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Pessimistic concurrency control: coarse locks

thread T1 thread T2

Consider a hash-table

ht.add({]); ht.add({));
ﬂ#m
1 =—
2D s I if(ht.contains(@@)) if(ht.contains(@))
3 == (O}~ ht.del(@); ht.del(@B);

4 ==mp O30

5 ==t @0
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Pessimistic concurrency control: coarse locks

thread T1 thread T2

iIsider a hash-table

gl k ht.add({)); ht.add({));
-8
{ )
2 e ; if(ht.contains(@)) if(ht.contains())
3 m==b ()-{) ht.del (@) ht.del (@ );

4 ==mp O30
5 === (B -00
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Pessimistic concurrency control: coarse locks

thread T1 thread T2

isider a hash-table ht.lock();
AI k ht.add({)); ht.add({));
-8
y )
2 —=> ] if(ht.contains(@@)) if(ht.contains(@))
3 ==b (DD ht.del(@D); ht.del(@B);

4 ==mp O30
5 === (B -00
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Pessimistic concurrency control: coarse locks

thread T1 thread T2

isider a hash-table ht.lock();
AI k ht.add({)); ht.add({));
-8
y )
2 —=> ] if(ht.contains(@@)) if(ht.contains(@))
3 ==b (DD ht.del(@D); ht.del(@B);

4 ==mp O30 ht.unlock();
g &
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Pessimistic concurrency control: coarse locks

thread T1 thread T2

isider a hash-table ht.lock(); ht.lock();
AI k ht.add({)); ht.add({));
.80
L )
2 ummpp ) if(ht.contains(-)) if(ht.contains(.))
3 b - ht.del(@); ht.del(EB);

4 ==mp O30 ht.unlock();
g &
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Pessimistic concurrency control: coarse locks

thread T1 thread T2

isider a hash-table ht.lock(); ht.lock();
- ht.add({)); ht.add({J);
-8
1 J
2 eumpd) ) if(ht.contains(-)) if(ht.contains (E))
3 =mmd (O)—-{) ht.del(@); ht.del(EB);
4 ===y OO0 ht.unlock(); ht.unlock();
5 ==t @B-E0
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Pessimistic concurrency control: coarse locks

thread T1 thread T2

_ isider a hash-table ht.lock(); ht.lock();
H| k ht.add({)); ht.add({_]));
-8
el
2 ammbh | if(ht.contains(@)) if(ht.contains(]))
Y ht.del(@D); ht.del(@);
4 ==mp O30 ht.unlock(); ht.unlock();
5 ==t> @@
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Pessimistic concurrency control: coarse locks

thread T1 thread T2

iIsider a hash-table

=

TN

CS380P

ht.lock(); ht.lock();
ht.add({]); ht.add({T));

if(ht. contains(- )) if(ht.contains{_]))

ht.del(@D); ht.del(@D);
ht.unlock(); ht.unlock();

Coarse lock:
Non-conflicting ops serialized

Low Complexity -- Low Performance

Scalability + Correctness



Pessimistic concurrency control: fine locks

thread T1 thread T2

isider a hash-table figure-out-locks(); figure-out-locks();

I8

~ lock-them-inorder(); lock-them-inorder();
D Q) ht.add@); nt.add((D);
I

A )

'Q' ) if(ht.contains(@)) if(ht.contains({_]))
C‘] D ht.del(@m); ht.del (@);

E ] unlock-locks(); unlock-locks();
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Pessimistic concurrency control: fine locks

thread T1 thread T2

=

iIsider a hash-table

2 QA
EléJ

Is,
IDDDD

)
)
g B
)

CS380P

figure-out-locks(); figure-out-locks();
lock-them-inorder(); lock-them-inorder();

ht.add({)); ht.add({TJ);

if(ht.contains(@)) if(ht.contains({_])))
ht.del(@®); ht.del(@D);

unlock-locks(); unlock-locks

Fine-grain lock:
Non-conflicting parallel

High Complexity -- High Performance

Scalability + Correctness



Why Locks are Hard

e Coarse-grain locks
e Simple to develop
* Easy to avoid deadlock
* Few data races
* Limited concurrency

CS380P

* Fine-grain locks

Scalability + Correctness

Greater concurrency

Greater code complexity

Potential deadlocks

Not composable

Potential data races

Which lock to lock?
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Why Locks are Hard

e Coarse-grain locks * Fine-grain locks
e Simple to develop e Greater concurrency
* Easy to avoid deadlock * Greater code complexity
* Few data races e Potential deadlocks
e Limited concurrency * Not composable
e Potential data races
// WITH FINE-GRAIN LOCKS * Which lock to lock?
void move (T s, T d, Obj key) {
LOCK (s) ;
LOCK (4d) ;

tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

}

CS380P Scalability + Correctness 29



Why Locks are Hard

e Coarse-grain locks * Fine-grain locks
e Simple to develop

Greater concurrency

* Easy to avoid deadlock Greater code complexity

* Few data races Potential deadlocks

e Limited concurrency * Not composable
* Potential data races
// WITH FINE-GRAIN LOCKS * Which lock to lock?
void move (T s, T d, Obj key) {
LOCK (s) ; Thread 0 Thread 1
LOCK (4d) ; move (a, b, keyl);

tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

}
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move (b, a, key2);



Why Locks are Hard

e Coarse-grain locks
e Simple to develop
* Easy to avoid deadlock
* Few data races
* Limited concurrency

// WITH FINE-GRAIN LOCKS
void move (T s, T d, Obj key) {
LOCK (s) ;
LOCK (d) ;
tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

}

CS380P

* Fine-grain locks
Greater concurrency

Greater code complexity

Potential deadlocks

* Not composable
Potential data races

* Which lock to lock?

Thread 0 Thread 1
move (a, b, keyl);

move (b, a, key2);

DEADLOCK!

Scalability + Correctness
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