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Language-Level Concurrency Support



Message Passing background

Concurrency in Go

Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and I borrowed from it: 
https://talks.golang.org/2012/concurrency.slide
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Review: Execution and Programming Models

Concrete execution model: 
Multiple CPU(s) execute instructions sequentially

Programming Model Dimensions:
How to specify computation
How to specify communication
How to specify coordination/control transfer

Techniques/primitives
Threads/Processes/Fibers/Events
Message passing vs shared memory
Preemption vs Non-preemption

** Dimensions/techniques not always orthogonal
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Recurring theme
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Message Passing

Threads/Processes send/receive messages
Three design dimensions

Naming/Addressing: how do processes refer to each other?
Synchronization: how to wait for messages (block/poll/notify)?
Buffering/Capacity: can messages wait in some intermediate structure?
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Naming: Explicit vs Implicit
Also: Direct vs Indirect

Explicit Naming
Each process must explicitly name the other party
Primitives:

send(receiver, message)
receive(sender, message)

Implicit Naming
Messages sent/received to/from mailboxes
Mailboxes may be named/shared
Primitives:

send(mailbox, message)
receive(mailbox, message)

Q P

Q P
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Synchronous vs. Asynchronous
Blocking send: sender blocks until received
Nonblocking send: send resumes before message received
Blocking receive: receiver blocks until message available
Non-blocking receive: receiver gets a message or null

Blocking:
+   simple
+   avoids wasteful spinning
- Inflexible
- Can hide concurrency
Non-blocking:
+   maximal flexibility
- error handling/detection tricky
- interleaving useful work non-trivial



Synchronization

Synchronous vs. Asynchronous
Blocking send: sender blocks until received
Nonblocking send: send resumes before message received
Blocking receive: receiver blocks until message available
Non-blocking receive: receiver gets a message or null

If both send and receive block
“Rendezvouz”
Operation acts as an ordering primitive
Sender knows receiver succeeded
Receiver knows sender succeeded
Particularly appealing in distributed environment
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CSP: language for multi-processor machines
• Non-buffered message passing

• No shared memory
• Send/recv are blocking

• Explicit naming of src/dest processes
• Also called direct naming
• Receiver specifies source process
• Alternatives: indirect

• Port, mailbox, queue, socket
• Guarded commands to let processes wait
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CSP: language for multi-processor machines
• Non-buffered message passing

• No shared memory
• Send/recv are blocking

• Explicit naming of src/dest processes
• Also called direct naming
• Receiver specifies source process
• Alternatives: indirect

• Port, mailbox, queue, socket
• Guarded commands to let processes wait

 Transputer!
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P recv_multi(Q) {
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}
Is there a problem 

with this?
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Blocking with Indirect Naming

Processes need to receive messages from different senders

blocking receive with indirect naming
Process waits on port, gets first message to arrive at that port

Q

R

S

P receive(port, message)

OK to block (good)
Requires indirection (less good)
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Non-blocking with Direct Naming

Processes need to receive messages from different senders

Non-blocking receive with direct naming
Requires receiver to poll senders

Q

R

S

P

Polling (bad)
No indirection (good)

while(…) {

try_receive(Q, message)

try_receive(R, message)

try_receive(S, message)

}
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Blocking and Direct Naming

How to achieve it?
CSP provides abstractions/primitives for it

Q

R

S
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Alternative / Guarded Commands

Guarded command is delayed until either 

• guard succeeds→ cmd executes or

• guard fails→command aborts

Alternative command:

• list of one or more guarded commands

• separated by ”||” 

• surrounded by square brackets 

[ x  y -> max:= x || y  x -> max:= y ]



Alternative / Guarded Commands

Guarded command is delayed until either 

• guard succeeds→ cmd executes or

• guard fails→command aborts

Alternative command:

• list of one or more guarded commands

• separated by ”||” 

• surrounded by square brackets 

[ x  y -> max:= x || y  x -> max:= y ]

• Enable choice preserving concurrency
• Hugely influential
• goroutines, channels, select, defer:

• Trying to achieve the same thing



CSP: the root of many languages
Occam, Erlang, Newsqueak, Concurrent ML, Alef, Limbo

Go is a Newsqueak-Alef-Limbo derivative
Distinguished by first class channel support

Program: goroutines communicating through channels

Guarded and alternative-like constructs in select and defer

Go Concurrency
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Goroutines

Independently executing function launched by go statement
Has own call stack
Cheap: Ok to have 1000s…100,000s of them
Not a thread

One thread may have 1000s of go routines!

Multiplexed onto threads as needed to ensure forward progress
Deadlock detection built in
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Channels

Connect goroutines allowing them to communicate
• When main executes <-c, it blocks

• When boring executes c <- value it blocks

• Channels communicate and synchronize



Select: Handling Multiple Channels

All channels are evaluated

Select blocks until one communication can proceed
Cf. Linux select system call, Windows WaitForMultipleObjectsEx

Cf. Alternatives and guards in CPS

If multiple can proceed select chooses randomly

Default clause executes immediately if no ready channel 
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Implementing Search

Workload: 

Accept query

Return page of results (with ugh, ads)

Get search results by sending query to 
Web Search

Image Search

YouTube

Maps

News, etc

How to implement this?
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Run Web, Image, Video searches concurrently, wait for results

No locks, conditions, callbacks
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Note the absence of locks in previous examples!

Goroutines and channels are the main primitives

Sometimes you just need a reference counter or lock
“sync” and “sync/atomic” packages 

Mutex, condition, atomic operations

Sometimes you need to wait for a go routine to finish 
Didn’t happen in any of the examples in the slides

WaitGroups are key

Other tools in Go



WaitGroups
func testQ() {

var wg sync.WaitGroup
wg.Add(4)
ch := make(chan int)
for i:=0; i<4; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)
} else {

fmt.Printf("reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
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Go: magic or threadpools and concurrent Qs? 

We’ve seen several abstractions for 
Control flow/exection

Communication

Lots of discussion of pros and cons

Ultimately still CPUs + instructions

Go: just sweeping issues under the language interface?
Why is it OK to have 100,000s of goroutines?

Why isn’t composition an issue?
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Scaling to 1000s of goroutines

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
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ch := make(chan int)
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Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

Transputers did this in hardware in 
the 90s btw.

https://golang.org/src/runtime/chan.go
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Go: Sliced Bread 2.0?

• Lacks compile-time generics
• Results in code duplication

• Metaprogramming cannot be statically checked

• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory 

management

• Right tradeoffs? None of these problems have to do with concurrency! 


