
Chris Rossbach and Calvin Lin

cs380p

Language-Level Concurrency Support

Message Passing background

Concurrency in Go

Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and I borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Outline

Review: Execution and Programming Models

Review: Execution and Programming Models

Review: Execution and Programming Models

Concrete execution model:
Multiple CPU(s) execute instructions sequentially

Review: Execution and Programming Models

Concrete execution model:
Multiple CPU(s) execute instructions sequentially

Programming Model Dimensions:
How to specify computation
How to specify communication
How to specify coordination/control transfer

Review: Execution and Programming Models

Concrete execution model:
Multiple CPU(s) execute instructions sequentially

Programming Model Dimensions:
How to specify computation
How to specify communication
How to specify coordination/control transfer

Techniques/primitives
Threads/Processes/Fibers/Events
Message passing vs shared memory
Preemption vs Non-preemption

Review: Execution and Programming Models

Concrete execution model:
Multiple CPU(s) execute instructions sequentially

Programming Model Dimensions:
How to specify computation
How to specify communication
How to specify coordination/control transfer

Techniques/primitives
Threads/Processes/Fibers/Events
Message passing vs shared memory
Preemption vs Non-preemption

** Dimensions/techniques not always orthogonal

Threads have a *lot* of down-sides:
Tuning parallelism for different environments

Load balancing/assignment brittle

Shared state requires locks →
Priority inversion

Deadlock

Incorrect synchronization

…

Message Passing: Motivation

Threads have a *lot* of down-sides:
Tuning parallelism for different environments

Load balancing/assignment brittle

Shared state requires locks →
Priority inversion

Deadlock

Incorrect synchronization

…

Message passing:
Threads aren’t the problem, shared memory is

Restructure programming model to avoid communication through
shared memory (and therefore locks)

Message Passing: Motivation

Threads have a *lot* of down-sides:
Tuning parallelism for different environments

Load balancing/assignment brittle

Shared state requires locks →
Priority inversion

Deadlock

Incorrect synchronization

…

Message passing:
Threads aren’t the problem, shared memory is

Restructure programming model to avoid communication through
shared memory (and therefore locks)

Message Passing: Motivation

Recurring theme

Message Passing

Message Passing

Threads/Processes send/receive messages

Message Passing

Threads/Processes send/receive messages
Three design dimensions

Naming/Addressing: how do processes refer to each other?
Synchronization: how to wait for messages (block/poll/notify)?
Buffering/Capacity: can messages wait in some intermediate structure?

Naming: Explicit vs Implicit
Also: Direct vs Indirect

Naming: Explicit vs Implicit
Also: Direct vs Indirect

Explicit Naming
Each process must explicitly name the other party
Primitives:

send(receiver, message)
receive(sender, message) Q P

Naming: Explicit vs Implicit
Also: Direct vs Indirect

Explicit Naming
Each process must explicitly name the other party
Primitives:

send(receiver, message)
receive(sender, message)

Implicit Naming
Messages sent/received to/from mailboxes
Mailboxes may be named/shared
Primitives:

send(mailbox, message)
receive(mailbox, message)

Q P

Q P

Synchronization

Synchronization

Synchronous vs. Asynchronous
Blocking send: sender blocks until received
Nonblocking send: send resumes before message received
Blocking receive: receiver blocks until message available
Non-blocking receive: receiver gets a message or null

Synchronization

Synchronous vs. Asynchronous
Blocking send: sender blocks until received
Nonblocking send: send resumes before message received
Blocking receive: receiver blocks until message available
Non-blocking receive: receiver gets a message or null

Blocking:
+ simple
+ avoids wasteful spinning
- Inflexible
- Can hide concurrency
Non-blocking:
+ maximal flexibility
- error handling/detection tricky
- interleaving useful work non-trivial

Synchronization

Synchronous vs. Asynchronous
Blocking send: sender blocks until received
Nonblocking send: send resumes before message received
Blocking receive: receiver blocks until message available
Non-blocking receive: receiver gets a message or null

If both send and receive block
“Rendezvouz”
Operation acts as an ordering primitive
Sender knows receiver succeeded
Receiver knows sender succeeded
Particularly appealing in distributed environment

Communicating Sequential Processes
Hoare 1978

CSP: language for multi-processor machines
• Non-buffered message passing

• No shared memory
• Send/recv are blocking

• Explicit naming of src/dest processes
• Also called direct naming
• Receiver specifies source process
• Alternatives: indirect

• Port, mailbox, queue, socket
• Guarded commands to let processes wait

Communicating Sequential Processes
Hoare 1978

CSP: language for multi-processor machines
• Non-buffered message passing

• No shared memory
• Send/recv are blocking

• Explicit naming of src/dest processes
• Also called direct naming
• Receiver specifies source process
• Alternatives: indirect

• Port, mailbox, queue, socket
• Guarded commands to let processes wait

 Transputer!

An important problem in the CSP model

An important problem in the CSP model

Processes need to receive messages from different senders

An important problem in the CSP model

Processes need to receive messages from different senders
Only primitive: blocking receive(<name>, message)

An important problem in the CSP model

Processes need to receive messages from different senders
Only primitive: blocking receive(<name>, message)

Q

R

S

P

An important problem in the CSP model

Processes need to receive messages from different senders
Only primitive: blocking receive(<name>, message)

Q

R

S

P recv_multi(Q) {

receive(Q, message)

receive(R, message)

receive(S, message)

}

An important problem in the CSP model

Processes need to receive messages from different senders
Only primitive: blocking receive(<name>, message)

Q

R

S

P recv_multi(Q) {

receive(Q, message)

receive(R, message)

receive(S, message)

}
Is there a problem

with this?

An important problem in the CSP model

Processes need to receive messages from different senders
Only primitive: blocking receive(<name>, message)

Q

R

S

P recv_multi(Q) {

receive(Q, message)

receive(R, message)

receive(S, message)

}
Is there a problem

with this?

X

X

Blocking with Indirect Naming

Processes need to receive messages from different senders

blocking receive with indirect naming
Process waits on port, gets first message to arrive at that port

Blocking with Indirect Naming

Processes need to receive messages from different senders

blocking receive with indirect naming
Process waits on port, gets first message to arrive at that port

Q

R

S

P receive(port, message)

Blocking with Indirect Naming

Processes need to receive messages from different senders

blocking receive with indirect naming
Process waits on port, gets first message to arrive at that port

Q

R

S

P receive(port, message)

OK to block (good)
Requires indirection (less good)

Non-blocking with Direct Naming

Processes need to receive messages from different senders

Non-blocking receive with direct naming
Requires receiver to poll senders

Non-blocking with Direct Naming

Processes need to receive messages from different senders

Non-blocking receive with direct naming
Requires receiver to poll senders

Q

R

S

P

Non-blocking with Direct Naming

Processes need to receive messages from different senders

Non-blocking receive with direct naming
Requires receiver to poll senders

Q

R

S

P

while(…) {

try_receive(Q, message)

try_receive(R, message)

try_receive(S, message)

}

Non-blocking with Direct Naming

Processes need to receive messages from different senders

Non-blocking receive with direct naming
Requires receiver to poll senders

Q

R

S

P

Polling (bad)
No indirection (good)

while(…) {

try_receive(Q, message)

try_receive(R, message)

try_receive(S, message)

}

Blocking and Direct Naming

Q

R

S

P

Blocking and Direct Naming

How to achieve it?

Q

R

S

P

Blocking and Direct Naming

How to achieve it?
CSP provides abstractions/primitives for it

Q

R

S

P

Alternative / Guarded Commands

Guarded command is delayed until either

• guard succeeds→ cmd executes or

• guard fails→command aborts

Alternative command:

• list of one or more guarded commands

• separated by ”||”

• surrounded by square brackets

[x y -> max:= x || y x -> max:= y]

Alternative / Guarded Commands

Guarded command is delayed until either

• guard succeeds→ cmd executes or

• guard fails→command aborts

Alternative command:

• list of one or more guarded commands

• separated by ”||”

• surrounded by square brackets

[x y -> max:= x || y x -> max:= y]

• Enable choice preserving concurrency
• Hugely influential
• goroutines, channels, select, defer:

• Trying to achieve the same thing

CSP: the root of many languages
Occam, Erlang, Newsqueak, Concurrent ML, Alef, Limbo

Go is a Newsqueak-Alef-Limbo derivative
Distinguished by first class channel support

Program: goroutines communicating through channels

Guarded and alternative-like constructs in select and defer

Go Concurrency

A boring function

A boring function

Ignoring a boring function

• Go statement runs the function
• Doesn’t make the caller wait
• Launches a goroutine
• Analagous to & on shell command

Ignoring a boring function

• Go statement runs the function
• Doesn’t make the caller wait
• Launches a goroutine
• Analagous to & on shell command

• Keep main() around a while
• See goroutine actually running

Ignoring a boring function

• Go statement runs the function
• Doesn’t make the caller wait
• Launches a goroutine
• Analagous to & on shell command

• Keep main() around a while
• See goroutine actually running

Goroutines

Goroutines

Independently executing function launched by go statement

Goroutines

Independently executing function launched by go statement
Has own call stack

Goroutines

Independently executing function launched by go statement
Has own call stack
Cheap: Ok to have 1000s…100,000s of them

Goroutines

Independently executing function launched by go statement
Has own call stack
Cheap: Ok to have 1000s…100,000s of them
Not a thread

One thread may have 1000s of go routines!

Goroutines

Independently executing function launched by go statement
Has own call stack
Cheap: Ok to have 1000s…100,000s of them
Not a thread

One thread may have 1000s of go routines!

Multiplexed onto threads as needed to ensure forward progress
Deadlock detection built in

Channels

Connect goroutines allowing them to communicate

Channels

Connect goroutines allowing them to communicate

Channels

Connect goroutines allowing them to communicate

Channels

Connect goroutines allowing them to communicate

Channels

Connect goroutines allowing them to communicate
• When main executes <-c, it blocks

• When boring executes c <- value it blocks

• Channels communicate and synchronize

Select: Handling Multiple Channels

All channels are evaluated

Select blocks until one communication can proceed
Cf. Linux select system call, Windows WaitForMultipleObjectsEx

Cf. Alternatives and guards in CPS

If multiple can proceed select chooses randomly

Default clause executes immediately if no ready channel

Select: Handling Multiple Channels

All channels are evaluated

Select blocks until one communication can proceed
Cf. Linux select system call, Windows WaitForMultipleObjectsEx

Cf. Alternatives and guards in CPS

If multiple can proceed select chooses randomly

Default clause executes immediately if no ready channel

Implementing Search

Workload:

Accept query

Return page of results (with ugh, ads)

Get search results by sending query to
Web Search

Image Search

YouTube

Maps

News, etc

How to implement this?

Search 1.0

“Google” function takes query and returns a slice of results (strings)

Invokes Web, Image, Video search serially

Search 1.0

“Google” function takes query and returns a slice of results (strings)

Invokes Web, Image, Video search serially

Search 2.0

Run Web, Image, Video searches concurrently, wait for results

No locks, conditions, callbacks

Search 2.1

Don’t wait for slow servers: No locks, conditions, callbacks!

Search 3.0

Reduce tail latency with replication. No locks, conditions, callbacks!

Search 3.0

Reduce tail latency with replication. No locks, conditions, callbacks!

Search 3.0

Reduce tail latency with replication. No locks, conditions, callbacks!

Note the absence of locks in previous examples!

Goroutines and channels are the main primitives

Sometimes you just need a reference counter or lock
“sync” and “sync/atomic” packages

Mutex, condition, atomic operations

Sometimes you need to wait for a go routine to finish
Didn’t happen in any of the examples in the slides

WaitGroups are key

Other tools in Go

WaitGroups
func testQ() {

var wg sync.WaitGroup
wg.Add(4)
ch := make(chan int)
for i:=0; i<4; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)
} else {

fmt.Printf("reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

}

WaitGroups
func testQ() {

var wg sync.WaitGroup
wg.Add(4)
ch := make(chan int)
for i:=0; i<4; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)
} else {

fmt.Printf("reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

}

WaitGroups
func testQ() {

var wg sync.WaitGroup
wg.Add(4)
ch := make(chan int)
for i:=0; i<4; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)
} else {

fmt.Printf("reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

}

Go: magic or threadpools and concurrent Qs?

We’ve seen several abstractions for
Control flow/exection

Communication

Lots of discussion of pros and cons

Ultimately still CPUs + instructions

Go: just sweeping issues under the language interface?
Why is it OK to have 100,000s of goroutines?

Why isn’t composition an issue?

Go implementation details

Go implementation details

M = “machine” → OS thread

Go implementation details

M = “machine” → OS thread
P = (processing) context

Go implementation details

M = “machine” → OS thread
P = (processing) context
G = goroutines

Go implementation details

M = “machine” → OS thread
P = (processing) context
G = goroutines
Each ‘M’ has a queue of goroutines

Go implementation details

M = “machine” → OS thread
P = (processing) context
G = goroutines
Each ‘M’ has a queue of goroutines
Goroutine scheduling is cooperative

Switch out on complete or block
Very light weight (fibers!)
Scheduler does work-stealing

Go implementation details

M = “machine” → OS thread
P = (processing) context
G = goroutines
Each ‘M’ has a queue of goroutines
Goroutine scheduling is cooperative

Switch out on complete or block
Very light weight (fibers!)
Scheduler does work-stealing

Go implementation details

M = “machine” → OS thread
P = (processing) context
G = goroutines
Each ‘M’ has a queue of goroutines
Goroutine scheduling is cooperative

Switch out on complete or block
Very light weight (fibers!)
Scheduler does work-stealing

Go implementation details

M = “machine” → OS thread
P = (processing) context
G = goroutines
Each ‘M’ has a queue of goroutines
Goroutine scheduling is cooperative

Switch out on complete or block
Very light weight (fibers!)
Scheduler does work-stealing

Go implementation details

M = “machine” → OS thread
P = (processing) context
G = goroutines
Each ‘M’ has a queue of goroutines
Goroutine scheduling is cooperative

Switch out on complete or block
Very light weight (fibers!)
Scheduler does work-stealing

Scaling to 1000s of goroutines

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

Scaling to 1000s of goroutines

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

• Creates a channel
• Creates “consumers” goroutines
• Each of them tries to read from the channel
• Main either:

• Sleeps for 1 second, closes the channel
• sends “consumers” values

Scaling to 1000s of goroutines

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

• Creates a channel
• Creates “consumers” goroutines
• Each of them tries to read from the channel
• Main either:

• Sleeps for 1 second, closes the channel
• sends “consumers” values

Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

https://golang.org/src/runtime/chan.go

Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

https://golang.org/src/runtime/chan.go

Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

Race detection! Cool!

https://golang.org/src/runtime/chan.go

Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

https://golang.org/src/runtime/chan.go

Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

https://golang.org/src/runtime/chan.go

Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

https://golang.org/src/runtime/chan.go

Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

https://golang.org/src/runtime/chan.go

Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

https://golang.org/src/runtime/chan.go

Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

https://golang.org/src/runtime/chan.go

Channel Implementation

You can just read it:
https://golang.org/src/runtime/chan.go

Some highlights

Transputers did this in hardware in
the 90s btw.

https://golang.org/src/runtime/chan.go

31

Go: Sliced Bread 2.0?

31

Go: Sliced Bread 2.0?

• Lacks compile-time generics

31

Go: Sliced Bread 2.0?

• Lacks compile-time generics
• Results in code duplication

31

Go: Sliced Bread 2.0?

• Lacks compile-time generics
• Results in code duplication

• Metaprogramming cannot be statically checked

31

Go: Sliced Bread 2.0?

• Lacks compile-time generics
• Results in code duplication

• Metaprogramming cannot be statically checked

• Standard library cannot offer generic algorithms

31

Go: Sliced Bread 2.0?

• Lacks compile-time generics
• Results in code duplication

• Metaprogramming cannot be statically checked

• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose

31

Go: Sliced Bread 2.0?

• Lacks compile-time generics
• Results in code duplication

• Metaprogramming cannot be statically checked

• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

31

Go: Sliced Bread 2.0?

• Lacks compile-time generics
• Results in code duplication

• Metaprogramming cannot be statically checked

• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection

31

Go: Sliced Bread 2.0?

• Lacks compile-time generics
• Results in code duplication

• Metaprogramming cannot be statically checked

• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

31

Go: Sliced Bread 2.0?

• Lacks compile-time generics
• Results in code duplication

• Metaprogramming cannot be statically checked

• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

