
Coordinated and Efficient Huge Page Management with Ingens

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach1, Emmett Witchel
The University of Texas at Austin

1The University of Texas at Austin and VMware Research Group

Abstract
Modern computing is hungry for RAM, with today’s enor-
mous capacities eagerly consumed by diverse workloads.
Hardware address translation overheads have grown with
memory capacity, motivating hardware manufacturers to
provide TLBs with thousands of entries for large page
sizes (called huge pages). Operating systems and hypervi-
sors support huge pages with a hodge-podge of best-effort
algorithms and spot fixes that made sense for architectures
with limited huge page support, but the time has come for
a more fundamental redesign.

Ingens is a framework for huge page support that re-
lies on a handful of basic primitives to provide trans-
parent huge page support in a principled, coordinated
way. By managing contiguity as a first-class resource and
by tracking utilization and access frequency of memory
pages, Ingens is able to eliminate a number of fairness
and performance pathologies that plague current systems.
Experiments with our prototype demonstrate fairness im-
provements, performance improvements (up to 18%), tail-
latency reduction (up to 41%), and reduction of memory
bloat from 69% to less than 1% for important applications
like Web services (e.g., the Cloudstone benchmark) and
the Redis key-value store.

1 Introduction
Modern computing platforms can support terabytes of
RAM and workloads able to take advantage of such large
memories are now commonplace [51]. However, in-
creased capacity represents a significant challenge for
address translation. All modern processors use page ta-
bles for address translation and TLBs to cache virtual-
to-physical mappings. Because TLB capacities cannot
scale at the same rate as DRAM, TLB misses and address
translation can incur crippling performance penalties for
large memory workloads [44, 53] when these workloads
use traditional page sizes (i.e., 4KB). Hardware-supported
address virtualization (e.g., AMD’s nested page tables) in-
creases average-case address translation overhead because

multi-dimensional page tables amplify worst-case trans-
lation costs by 6× [59]. Hardware manufacturers have
addressed increasing DRAM capacity with better support
for larger page sizes, or huge pages, which reduce address
translation overheads by reducing the frequency of TLB
misses. However, the success of these mechanisms is crit-
ically dependent on the ability of the operating systems
and hypervisors to manage huge pages.

While huge pages have been commonly supported in
hardware since the 90s [75, 76], until recently, processors
have had a very small number of TLB entries reserved
for huge pages, limiting their usability. Newer architec-
tures support thousands of huge page entries in dual-level
TLBs (e.g., 1,536 in Intel’s Skylake [1]), which is a major
change: the onus of better huge page support has shifted
from the hardware to the system software. There is now
both an urgent need and an opportunity to modernize
memory management.

Operating system memory management has generally
responded to huge page hardware with best-effort algo-
rithms and spot fixes, choosing to keep their management
algorithms focused on the 4KB page (which we call a base
page). For example, Linux and KVM (Linux’s in-kernel
hypervisor) adequately support many large-memory work-
loads (i.e., ones with simple, static memory allocation be-
havior), but a variety of common workloads are exposed
to unacceptable performance overheads, wasted memory
capacity, and unfair performance variability when using
huge pages. These problems are common and severe
enough that administrators generally disable huge pages
(e.g., MongoDB, Couchbase, Redis, SAP, Splunk, etc.)
despite their obvious average-case performance advan-
tages [24, 9, 11, 30, 26, 32, 34, 37]. Other operating
systems have similar or even more severe problems sup-
porting huge pages (see §2.2 and §3.4).

Ingens1 is a memory manager for the operating system
and hypervisor that replaces the best-effort mechanisms

1Ingens is Latin for huge.

and spot-fixes of the past with a coordinated, unified ap-
proach to huge pages; one that is better targeted to the
increased TLB capacity in modern processors. Ingens
does not interfere with workloads that perform well with
current huge page support: the prototype adds 0.7% over-
head on average (Table 4). Ingens addresses the following
problems endemic to current huge page support, and we
quantify the impact of these problems on real workloads
using our prototype.
• Latency. Huge pages expose applications to high

latency variation and increased tail latency (§3.1). Ingens
improves the Cloudstone benchmark [77] by 18% and
reduces 90th percentile tail-latency by 41%.
• Bloat. Huge pages can make a process or virtual

machine (VM) occupy a large amount of physical memory
while much of that memory remains unusable due to
internal fragmentation (§3.2). For Redis, Linux bloats
memory use by 69%, while Ingens bloats by just 0.8%.
• Unfairness. Simple, greedy allocation of huge

pages is unfair, causing large and persistent performance
variation across identical processes or VMs (§3.5). Ingens
makes huge page allocation fair (e.g., Figure 5).
• High-performance memory savings. Services that

reduce memory consumption, such as kernel same-page
merging (KSM), can prevent a VM from using huge pages
(§3.6). On one workload (Figure 11), Linux saves 9.2%
of memory but slows down the programs by 6.8–19%.
Ingens saves 71.3% of the memory that Linux/KVM can
save with only a 1.5–2.6% slowdown.

Ingens is a memory management redesign that brings
performance, memory savings and fairness to memory-
intensive applications with dynamic memory behavior.
It is based on two principles: (1) memory contiguity is
an explicit resource to be allocated across processes and
(2) good information about spatial and temporal access
patterns is essential to managing contiguity; it allows the
OS to tell/predict when contiguity is/will be profitably
used. The measured performance of the Ingens prototype
on realistic workloads validates the approach.

2 Background
Current trends in memory management hardware are mak-
ing it critical that system software support huge pages ef-
ficiently and flexibly. This section considers those trends
along with the challenges huge page support creates for
the OS and hypervisor. We provide an overview of huge
page support in modern operating systems and conclude
with experiments that show the performance benefits for
the state-of-the-art in huge page management.

2.1 Virtual memory hardware trends

Virtual memory decouples the address space used by pro-
grams from that exported by physical memory (RAM).
A page table maps virtual to physical page number, with

recently used page table entries cached in the hardware
translation lookaside buffer (TLB). Increasing the page
size increases TLB reach (the amount of data covered by
translations cached in the TLB), but larger pages require
larger regions of contiguous physical memory. Large
pages can suffer from internal fragmentation (unused por-
tions within the unit of allocation) and can also increase
external fragmentation (reducing the remaining supply
of contiguous physical memory). Using larger pages re-
quires more active memory management from the system
software to increase available contiguity and avoid frag-
mentation.

Seminal work in huge page management recognized
the importance of explicitly managing memory contiguity
in the OS [68] and formed the basis for huge page support
in FreeBSD. Innovations of Ingens relative to previous
work are considered in detail in Section 3.4; here we
survey recent hardware trends that make the need for
system support of huge pages more urgent.

DRAM Growth. Larger DRAM sizes have led to
deeper page tables, increasing the number of memory
references needed to look up a virtual page number. x86
uses a 4-level page table with a worst case of four page
table memory references to perform a single address trans-
lation.

Hardware memory virtualization. Extended page ta-
bles (Intel) or nested page tables (AMD) require addi-
tional indirection for each stage of memory address trans-
lation, making the process of resolving a virtual page
number even more complex. With extended page tables,
both the guest OS and host hypervisor perform virtual to
physical translations to satisfy a single request. During
translation, guest physical addresses are treated as host
virtual addresses, which use hardware page-table walkers
to perform the entire translation. Each layer of lookup in
the guest can require a multi-level translation in the host,
amplifying the maximum cost to 24 lookups [59, 40], and
increasing average latencies [67].

Increased TLB reach. Recently, Intel has moved to
a two-level TLB design, and in the past few years has
provided a significant number of second-level TLB entries
for huge pages, going from zero for Sandy Bridge and
Ivy Bridge to 1,024 for Haswell [2] (2013) and 1,536 for
Skylake [1] (2015).

Better hardware support for multiple page sizes creates
an opportunity for the OS and the hypervisor, but it puts
stress on the current memory management algorithms.
In addition to managing the complexity of different page
granularities, system software must generate and maintain
significant memory contiguity to use larger page sizes.

Name Suite/Application Description
429.mcf SPEC CPU 2006 [33] Single-threaded scientific computation
Canneal PARSEC 3.0 [28] Parallel scientific computation
SVM [64] Liblinear [22] Machine learning, Support vector machine
Tunkrank [8] PowerGraph [55] Large scale in-memory graph analytics
Nutch [19] Hadoop [4] Web search indexing using MapReduce
MovieRecmd [25] Spark/MLlib [5] Machine learning, Movie recommendation
Olio Cloudstone [8] Social-event Web service (ngnix/php/mysql)
Redis Redis [29] In-memory Key-value store
MongoDB MongoDB [23] In-memory NoSQL database

Table 1: Summary of memory intensive workloads.

Issue OS Hyp
Page fault latency (§3.1) O
Bloat (§3.2) O
Fragmentation (§3.3) O O
Unfair allocation (§3.5) O O
Memory sharing (§3.6) O

Table 2: Summary of issues
in Linux as the guest OS and
KVM as the host hypervisor.

2.2 Operating system support for huge pages

Early operating system support for huge pages provided a
separate interface for explicit huge page allocation from a
dedicated huge page pool configured by the system admin-
istrator. Windows and OS X continue to have this level of
support. In Windows, applications must use an explicit
memory allocation API for huge page allocation [21] and
Windows recommends that applications allocate huge
pages all at once when they begin. OS X applications also
must set an explicit flag in the memory allocation API to
use huge pages [15].

Initial huge page support in Linux used a similar sep-
arate interface for huge page allocation that a developer
must invoke explicitly (called hugetlbfs). Developers
did not like the burden of this alternate API and kernel
developers wanted to bring the benefits of huge pages to
legacy applications and applications with dynamic mem-
ory behavior [6, 36]. Hence, the primary way huge pages
are allocated in Linux today is transparently by the kernel.

Transparent support is vital. Transparent huge page
support [80, 68] is the only practical way to bring the
benefits of huge pages to all applications, which can re-
main unchanged while the system provides them with the
often significant performance advantages of huge pages.
With transparent huge page support, the kernel allocates
memory to applications using base pages. We say the ker-
nel promotes a sequence of 512 properly aligned pages
to a huge page (and demotes a huge page into 512 base
pages).

Transparent management of huge pages best supports
the multi-programmed and dynamic workloads typical
of web applications and analytics where memory is con-
tended and access patterns are often unpredictable. To
the contrary, when a single big-memory application is
the only important program running, the application can
simply map a large region and keep it mapped for the
duration of execution, for example fast network functions
using Intel’s Data Plane Development Kit [10]. These
simple programs are well supported by even the rudimen-
tary huge page support in Windows and OS X. However,

multi-programmed workloads and workloads with more
complex memory behavior are common in enterprise and
cloud computing, so Ingens focuses on OS support for
these more challenging cases. While transparent huge
page support is far more developer-friendly than explicit
allocation, it creates memory management challenges in
the operating system that Ingens addresses.

Linux running on Intel processors currently has the
best transparent huge page support among commodity
OSes so we base our prototype on it and most of our
discussion focuses on Linux. We quantify Linux’s perfor-
mance advantages in Section 3.4. The design of Ingens
focuses on 4 KB (base) and 2 MB (huge) pages because
these are most useful to applications with dynamic mem-
ory behavior (1 GB are usually too large for user data
structures).

Linux is greedy and aggressive. Linux’s huge page
management algorithms are greedy: it promotes huge
pages in the page fault handler based on local information.
Linux is also aggressive: it will always try to allocate
a huge page. Huge pages require 2 MB of contiguous
free physical memory but sometimes contiguous phys-
ical memory is in short supply (e.g., when memory is
fragmented). Linux’s approach to huge page allocation
works well for simple applications that allocate a large
memory region and use it uniformly, but we demonstrate
many applications that have more complex behavior and
are penalized by Linux’s greedy and aggressive promo-
tion of huge pages (§3). Ingens recognizes that memory
contiguity is a valuable resource and explicitly manages
it.

2.3 Hypervisor support for huge pages

Ingens focuses on the case where Linux is used both as
the guest operating system and as the host hypervisor
(i.e., KVM [62]). The Linux/KVM pair is widely used in
cloud deployments [27, 16, 3]. In the hypervisor, Ingens
supports host huge pages mapped from guest physical
memory. When promoting guest physical memory, In-
gens modifies the extended page table to use huge pages
because it is acting as a hypervisor, not as an operating

Workloads h B g H h H g B h H g H
429.mcf 1.18 1.13 1.43
Canneal 1.11 1.10 1.32
SVM 1.14 1.17 1.53
Tunkrank 1.11 1.11 1.30
Nutch 1.01 1.07 1.12
MovieRecmd 1.03 1.02 1.11
Olio 1.43 1.08 1.46
Redis 1.12 1.04 1.20
MongoDB 1.08 1.22 1.37

Table 3: Application speed up for huge page (2 MB)
support relative to host (h) and guest (g) using base (4 KB)
pages. For example, h B means the host uses base pages
and h H means the host uses both base and huge pages.

system.
Because operating system and hypervisor memory man-

agement are unified in Linux, Ingens adopts the unified
model. Some of the problems with huge pages that we de-
scribe in Section 3 only apply to the OS and some only to
the hypervisor (summarized in Table 2). For example, ad-
dressing memory sharing vs. performance (§3.6) requires
only hypervisor modifications and would be as successful
for a Windows guest as it is for a Linux guest. We leave
for future work determining the most efficient way to
implement Ingens for operating systems and hypervisors
that do not share memory management code.

2.4 Performance improvement from huge pages

Table 1 describes a variety of memory-intensive real-
world applications including web infrastructure such as
key/value stores and databases, as well as scientific ap-
plications, data analytics and recommendation systems.
Measurements with hardware performance counters show
they all spend a significant portion of their execution time
doing page walks. For example, when using base pages
for both guest and host, we measure 429.mcf spending
47.5% of its execution time doing page walks (24.2% for
the extended page table and 23.3% for the guest page
table). On the other hand, 429.mcf spends only 4.2% of
its execution time walking page tables when using huge
pages for both the guest and host.

We execute all workloads in a KVM virtual machine
running Linux with default transparent huge page sup-
port [80] for both the application (in the guest OS) and
the virtual machine (in the host OS). The hardware con-
figuration is detailed in Section 6.

Table 3 shows the performance improvements gained
with transparent huge page support for both the guest
and the host operating system. The table shows speedup
normalized to the case where both host and guest use
only base pages. In every case, huge page support helps

performance, often significantly (up to 53%). The largest
speedup is always attained when both host and guest use
huge pages.

These results show the value of huge page support
and show that Linux’s memory manager can obtain that
benefit under simple operating conditions. However, a
variety of more challenging circumstances expose the
limitations of Linux’s memory management.

3 Current huge page problems
This section quantifies the limitations in performance
and fairness for the state-of-the-art in transparent huge
page management. We examine virtualized systems with
Linux/KVM as the guest OS and hypervisor. The variety
and severity of the limitations motivate our redesign of
page management. All data is collected using the experi-
mental setup described in Section 2.4.

3.1 Page fault latency and synchronous promotion

When a process faults on an anonymous memory region,
the page fault handler allocates physical memory to back
the page. Both base and huge pages share this code path.
Linux is greedy and aggressive in its allocation of huge
pages, so if an application faults on a base page, Linux
will immediately try to upgrade the request and allocate a
huge page if it can.

This greedy approach fundamentally increases page
fault latency for two reasons. First, Linux must zero pages
before returning them to the user. Huge pages are 512×
larger than base pages, and thus are much slower to clear.
Second, huge page allocation requires 2 MB of physically
contiguous memory. When memory is fragmented, the
OS often must compact memory to generate that much
contiguity. Previous work shows that memory quickly
fragments in multi-tenant cloud environments [41]. When
memory is fragmented, Linux will often synchronously
compact memory in the page fault handler, increasing
average and tail latency.

To measure these effects, we compare page fault la-
tency when huge pages are enabled and disabled, in frag-
mented and non-fragmented settings. We quantify frag-
mentation using the free memory fragmentation index
(FMFI) [58], a value between 0 (unfragmented) and 1
(highly fragmented). A microbenchmark maps 10 GB of
anonymous virtual memory and reads it sequentially.

When memory is unfragmented (FMFI < 0.1), page
clearing overheads increase average page fault latency
from 3.6 µs for base pages only to 378 µs for huge pages
(105× slower). When memory is heavily fragmented,
(FMFI = 0.9), the 3.6 µs average latency for base pages
grows to 8.1 µs (2.1× slower) for base and huge pages.
Average latency is lower in the fragmented case because
98% of the allocations fall back to base pages (e.g. be-
cause memory is too fragmented to allocate a huge page).

SVM Synchronous Asynchronous
Exec. time (sec) 178 (1.30×) 228 (1.02×)
Huge page 4.8 GB 468 MB
Promotion speed immediate 1.6 MB/s

Table 4: Comparison of synchronous promotion and asyn-
chronous promotion when both host and guest use huge
pages. The parenthesis is speedup compared to not using
huge pages. We use the default asynchronous promotion
speed of Ubuntu 14.04.

Workload Using huge pages Not using huge pages
Redis 20.7 GB (1.69×) 12.2 GB
MongoDB 12.4 GB (1.23×) 10.1 GB

Table 5: Physical memory size of Redis and MongoDB.

Compacting and zeroing memory in the page fault handler
penalizes applications that are sensitive to average latency
and to tail latency, such as Web services.

To avoid this additional page fault latency, Linux can
promote huge pages asynchronously, based on a config-
urable asynchronous promotion speed (in MB/s). Table 4
shows performance measurements for asynchronous-only
huge page promotion when executing SVM in a virtual
machine. Asynchronous-only promotion turns a 30%
speedup into a 2% speedup: it does not promote fast
enough. Simply increasing the promotion speed does
not solve the problem. Earlier implementations of Linux
did more aggressive asynchronous promotion, incurring
unacceptably high CPU utilization for memory scanning
and compaction. The CPU use of aggressive promotion
reduced or in some cases erased the performance benefits
of huge pages, causing users to disable transparent huge
page support in practice [17, 14, 13, 7].

3.2 Increased memory footprint (bloat)

Huge pages improve performance, but applications do
not always fully utilize the huge pages allocated to them.
Linux greedily allocates huge pages even though under-
utilized huge pages create internal fragmentation. A huge
page might eliminate TLB misses, but the cost is that a
process using less than a full huge page has to reserve the
entire region.

Table 5 shows memory bloat from huge pages when
running Redis and MongoDB, each within their own vir-
tual machine. For Redis, we populate 2 million keys with
8 KB objects and then delete 70% of the keys randomly.
Redis frees the memory backing the deleted objects which
leaves physical memory sparsely allocated. Linux pro-
motes the sparsely allocated memory to huge pages, creat-
ing internal fragmentation and causing Redis to use 69%
more memory compared to not using huge pages. We
demonstrate the same problem in MongoDB, making 10

0 20 40 60 80 100
time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ag

m
en

ta
tio

n
in

de
x

Redis using huge page
Redis not using huge page

Figure 1: Fragmentation index in Linux when running a
Redis server, with Linux using (and not using) huge pages.
The System has 24 GB memory. Redis uses 13 GB, other
processes use 5 GB, and system has 6 GB free memory.

million get requests for 15 million 1 KB objects which
are initially in persistent storage. MongoDB allocates the
objects sparsely in a large virtual address space. Linux
promotes huge pages including unused memory, and as
a result, MongoDB uses 23% more memory relative to
running without huge page support.

Greedy and aggressive allocation of huge pages makes
it impossible to predict an application’s total memory
usage in production because memory usage depends on
huge page use, which in turn depends on memory frag-
mentation and the allocation pattern of applications. Ta-
ble 5 shows if an administrator provisions 18 GB memory
(1.5× over-provisioning relative to using only base pages),
Redis starts swapping when it uses huge pages, negating
the benefits of caching objects in memory [31].

While these experiments illustrate the potential impact
of bloat for a handful of workloads, it is important to
note that the problem is fundamental to Linux’s current
design. Memory bloating can happen in any working
set, memory, and TLB size: application-level memory
usage can conspire with aggressive promotion to create
internal fragmentation that the OS cannot address. In
such situations, such applications will eventually put the
system under memory pressure regardless of physical
memory size.

3.3 Huge pages increase fragmentation

One common theme in analyzing page fault latency (§3.1)
and memory bloat (§3.2) is Linux’s greedy allocation and
promotion of huge pages. We now measure how aggres-
sive promotion of huge pages quickly consumes available
physical memory contiguity, which then increases mem-
ory fragmentation for the remaining physical memory.

OS SVM Canneal Redis
FreeBSD 1.28 1.13 1.02
Linux 1.30 1.21 1.15

Table 6: Performance speedup when using huge page in
different operating systems.

Increasing fragmentation is the precondition for problems
with page fault latency and memory bloat, so greedy pro-
motion creates a vicious cycle. We again rely on the free
memory fragmentation index, or FMFI to quantify the
relationship between huge page allocation and fragmenta-
tion.

Figure 1 shows the fragmentation index over time when
running the popular key-value store application Redis in a
virtual machine. Initially, the system is lightly fragmented
(FMFI = 0.3) by other processes. Through the measure-
ment period, Redis clients populate the server with 13 GB
of key/value pairs. Redis rapidly consumes contiguous
memory as Linux allocates huge pages to it, increasing
the fragmentation index. When the FMFI is equal to 1,
the remaining physical memory is so fragmented, Linux
starts memory compaction to allocate huge pages.

3.4 Comparison with FreeBSD huge page support

FreeBSD supports transparent huge pages using
reservation-based huge page allocation [68]. When ap-
plications start accessing a 2 MB virtual address region,
the page fault handler reserves contiguous memory, but
does not promote the region to a huge page. It allocates
base pages from the reserved memory for subsequent
page faults in the region. FreeBSD monitors page utiliza-
tion of the region and promotes it to a huge page only
when all base pages of the reserved memory are allocated.
FreeBSD is therefore slower to promote huge pages than
Linux and promotion requires complete utilization of a
2 MB region.

FreeBSD supports huge pages for file-cached pages.
x86 hardware maintains access/dirty bits for entire huge
pages—any read or write will set the huge page’s ac-
cess/dirty bit. FreeBSD wants to avoid increasing IO
traffic when evicting from the page cache or swapping.
Therefore it is conservative about creating writable huge
pages. When FreeBSD promotes a huge page, it marks
it read-only, with writes demoting the huge page. Only
when all pages in the region are modified will FreeBSD
then promote the region to a writable huge page. The
read-only promotion design does not increase IO traffic
from the page cache because huge pages consist of either
all clean (read-only) or all modified base pages.

FreeBSD promotion of huge pages is more conservative
than in Linux, which reduces memory bloating, but yields
slower performance. Table 6 compares the performance
benefits of huge pages in FreeBSD and Linux. Applica-

0 100 200 300 400 500 600 700 800
time (sec)

0

500

1000

1500

2000

2500

3000

H
ug

e
pa

ge
co

ns
um

pt
io

n
(M

B
) VM3

VM1

VM2

SVM VM1 VM2 VM3
Exec. time (sec) 533 (1.12×) 589 (1.24×) 475

Figure 2: Unfair allocation of huge pages in KVM. Three
virtual machines run concurrently, each executing SVM.
The line graph is huge page size (MB) over time and the
table shows execution time of SVM for 2 iterations.

tions with dense, uniform access memory patterns (e.g.,
SVM) enjoy similar speedups on Linux and FreeBSD.
However, FreeBSD does not support asynchronous pro-
motion, so applications which allocate memory gradually
(e.g., Canneal) show less benefit. Redis makes frequent
hash table updates and exhibits many read-only huge page
demotions in FreeBSD. Consequently, Redis also shows
limited speedup compared with Linux.

3.5 Unfair performance

All of our measurements are on virtual machines where
Linux is the guest operating system, and KVM (Linux’s
in-kernel hypervisor) is the host hypervisor. Ingens mod-
ifies the memory management code of both Linux and
KVM. The previous sections focused on problems with
operating system memory management, the remaining
sections describe problems with KVM memory manage-
ment.

Unfair huge page allocation can lead to unfair per-
formance differences when huge pages become scarce.
Linux does not fairly redistribute contiguity, which can
lead to unfair performance imbalance. To demonstrate
this problem, we run 4 virtual machines in a setting where
memory is initially fragmented (FMFI = 0.85). Each VM
uses 8 GB of memory. VM0 starts first and obtains all
huge pages that are available (3 GB). Later, VM1 starts
and begins allocating memory, during which VM2 and
VM3 start. VM0 then terminates, releasing its 3 GB of
huge pages. We measure how Linux redistributes that
contiguity to the remaining identical VMs.

The graph in Figure 2 shows the amount of huge page

Policy Mem saving Performance slowdown H/M

No
sharing –

429.mcf: 278
SVM: 191

Tunkrank: 236

429.mcf: 99%
SVM: 99%

Tunkrank: 99%

KVM
(Linux)

1.19 GB
(9.2%)

429.mcf: 331 (19.0%)
SVM: 204 (6.8%)

Tunkrank: 268 (13.5%)

429.mcf: 66%
SVM: 90%

Tunkrank: 69%

Huge page
sharing

199 MB
(1.5%)

429.mcf: 278 (0.0%)
SVM: 194 (1.5%)

Tunkrank: 238 (0.8%)

429.mcf: 99%
SVM: 99%

Tunkrank: 99%

Table 7: Memory saving and performance trade off for a multi-
process workload. Each row is an experiment where all work-
loads run concurrently in separate virtual machines. H/M - huge
page ratio out of total memory used. Parentheses in the Mem
saving column expresses the memory saved as a percentage of
the total memory (13 GB) allocated to all three virtual machines.

memory allocated to VM1, VM2, and VM3 (all running
SVM) over time, starting 10 seconds before the termina-
tion of VM0. When VM1 allocates memory, Linux com-
pacts memory for huge page allocation, but compaction
begins to fail at 810 MB. VM2 and VM3 start without
huge pages. When VM0 terminates 10 seconds into the ex-
periment, Linux allocates all 3 GB of recently freed huge
pages to VM3 through asynchronous promotion. This
creates significant and persistent performance inequality
among the VMs. The table in Figure 2 shows the variation
in performance (NB: to avoid IO measurement noise, data
loading time is excluded from the measurement). In a
cloud provider scenario, with purchased VM instances of
the same type, users have good reason to expect similar
performance from identical virtual machine instances, but
VM2 is 24% slower than VM3.

3.6 Memory sharing vs. performance

Modern hypervisors detect and share memory pages from
different virtual machines whose contents are identi-
cal [81, 63]. The ability to share identical memory re-
duces the memory consumed by guest VMs, increasing
VM consolidation ratios. In KVM, identical page sharing
in the host is done transparently in units of base pages.
If the contents of a base page are duplicated in a differ-
ent VM, but the duplicated base page is contained within
a huge page, KVM will split the huge page into base
pages to enable sharing. This policy prioritizes reducing
memory footprint over preservation of huge pages, so it
penalizes performance.

Another possible policy, which we call huge page shar-
ing, would not split huge pages. A base page is not al-
lowed to share pages belonging to a huge page to prevent
the demotion of the huge page but it can share base pages.
In contrast, a huge page is only allowed to share huge
pages. We implement huge page sharing to compare
with KVM and the result is shown in Table 7. We fit

Promote-kth

Scan-kth

Page fault
handler

Util radix tree (per process)

Util bit vector (512 bit)

…

Physical page metadata

Access bit vector
(8 bit)

Update / Lookup

Update

Promotion
request

Code Data structures

Lookup

Identical
page sharing

service

Lookup

Huge

Base

Huge

Figure 3: Important code and data structures in the Ingens
memory manager.

the virtual machine memory size to the working set size
of each workload to avoid spurious sharing of zeroed
pages. KVM saves 9.2% of memory but the workloads
show a slowdown of up to 19.0% because TLB misses
are increased by splitting huge pages (the percentage of
huge pages in use (H/M) goes down to 66%). On the
other hand, while huge page sharing preserves good per-
formance, it provides only reduced memory consumption
by 1.5%. This tradeoff between performance and memory
savings is avoidable. Identical page sharing services can
and should be coordinated with huge page management
to obtain both performance and memory saving benefits.

4 Design

Ingens’s goal is to enable transparent huge page support
that reduces latency, latency variability and bloat while
providing meaningful fairness guarantees and reasonable
tradeoffs between high performance and memory sav-
ings. Ingens builds on a handful of basic primitives to
achieve these goals: utilization tracking, access frequency
tracking, and contiguity monitoring.

While the discussion in this section is mostly expressed
in terms of process behavior, Ingens techniques apply
equally to processes and to virtual machines. Figure 3
shows the major data structures and code paths of Ingens,
which we describe in this section.

4.1 Monitoring space and time

Ingens unifies and coordinates huge page management
by introducing two efficient mechanisms to measure the
utilization of huge-page sized regions (space) and how
frequently huge-page sized regions are accessed (time).
Ingens collects this information efficiently and then lever-
ages it throughout the kernel to make policy decisions,
using two bitvectors. We describe both.

Util bitvector. The util bitvector records which base
pages are used within each huge-page sized memory re-
gion (an aligned 2 MB region containing 512 base pages).
Each bit set in the util bitvector indicates that the corre-
sponding base page is in use. The bitvector is stored in a
radix tree and Ingens uses a huge-page number as the key
to lookup a bitvector. The page fault handler updates the
util bitvector.

Access bitvector. The access bitvector records the re-
cent access history of a process to its pages (base or huge).
Scan-kth periodically scans a process’ hardware access
bits in its page table to maintain per-page (base or huge)
access frequency information, stored as an 8-bit vector
within Linux’ page metadata. Ingens computes the expo-
nential moving average (EMA) [12] from the bitvector
which we define as follows:

Ft = α(weight(util bitvector))+(1−α)Ft−1 (1)

The weight is the sum of set bits in the bitvector, Ft is
the access frequency value at time t, and α is a parame-
ter. Based on a sensitivity analysis using our workloads,
we set α to 0.4, meaning Ingens considers the page “fre-
quently accessed” when Ft ≥ 3×bitvector size/4 (i.e., 6
in our case).

We can experimentally verify the accuracy of the fre-
quency information by checking whether pages classified
as frequently accessed have their access bit set in the
next scan interval: in most workloads we find the mis-
prediction ratio to be under 3%, although random access
patterns (e.g. Redis, MongoDB) can yield higher error
rates depending on the dynamic request pattern.

4.2 Fast page faults

To keep the page fault handling path fast, Ingens decou-
ples promotion decisions (policy) from huge page alloca-
tion (mechanism). The page fault handler decides when
to promote a huge page and signals a background thread
(called Promote-kth) to do the promotion (and alloca-
tion if necessary) asynchronously (Figure 3). Promote-kth
compacts memory if necessary and promotes the pages
identified by the page fault handler. The Ingens page
fault handler never does a high-latency huge page alloca-
tion. When Promote-kth starts executing, it has a list of
viable candidates for promotion; after promoting them,
it resumes its scan of virtual memory to find additional
candidates.

4.3 Utilization-based promotion (mitigate bloat)

Ingens explicitly and conservatively manages memory
contiguity as a resource, allocating contiguous memory
only when it decides a process (or VM) will use most of
the allocated region based on utilization. Ingens allocates
only base pages in the page fault handler and tracks base
page allocations in the util bitvector. If a huge page region

accumulates enough allocated base pages (90% in our
prototype), the page fault handler wakes up Promote-kth
to promote the base pages to a huge page.

Utilization tracking lets Ingens mitigate memory bloat-
ing. Because Ingens allocates contiguous resources only
for highly utilized virtual address regions, it can control
internal fragmentation. The utilization threshold provides
an upper bound on memory bloat. For example, if an
administrator sets the threshold to 90%, processes can
use only 10% more memory in the worst case compared
to a system using base pages only. The administrator
can simply provision 10% additional memory to avoid
unexpected swapping.

Utilization-based demotion (performance). Pro-
cesses can free a base page, usually by calling free. If a
freed base page is contained within a huge page, Linux
demotes the huge page instantly. For example, Redis
frees objects when deleting keys which results in a system
call to free the memory. Redis uses jemalloc [20], whose
free implementation makes an madvise system call
with the MADV_DONTNEED flag to release the memory2.
Linux demotes the huge page that contains the freed base
page3.

Demoting in-use huge pages hurts performance. Con-
sequently, Ingens defers the demotion of high utilization
huge pages. When a base page is freed within a huge
page, Ingens clears the bit for the page in the util bitvec-
tor. When utilization drops below a threshold, Ingens
demotes the huge page and frees the base pages whose
bits are clear in the util bitvector.

4.4 Proactive batched compaction (reduce fragmen-
tation)

Maintaining available free contiguous memory is impor-
tant to satisfy large size allocation requests required when
Ingens decides to promote a region to a huge page, or to
satisfy other system-level contiguity in service of, for ex-
ample, device drivers or user-level DMA. To this end, In-
gens monitors the fragmentation state of physical memory
and proactively compacts memory to reduce the latency
of large contiguous allocations.

Ingens’s goal is to control memory fragmentation by
keeping FMFI below a threshold (that defaults to 0.8).
Proactive compaction happens in Promote-kth after per-
forming periodic scanning. Aggressive proactive com-
paction causes high CPU utilization, interfering with user
applications. Ingens limits the maximum amount of com-
pacted memory to 100 MB for each compaction. Com-
paction moves pages, which necessitates TLB invalida-
tions. Ingens does not move frequently accessed pages to

2TCMalloc [35] also functions this way.
3Kernel version 4.5 introduces a new mechanism to free memory

efficiently, called MADV FREE but it also demotes huge pages instantly
and causes the same memory bloating problem as MADV DONTNEED.

reduce the performance impact of compaction.

4.5 Balance page sharing with performance

Ingens uses access frequency information to balance iden-
tical page sharing with application performance. It de-
cides whether or not huge pages should be demoted to
enable sharing of identical base pages contained within
the huge page. In contrast to KVM, which always priori-
tizes memory savings over contiguity, Ingens implements
a policy that avoids demoting frequently accessed huge
pages. When encountering a matching identical base-page
sized region within a huge page, Ingens denies sharing if
that huge page is frequently accessed, otherwise it allows
the huge page to be demoted for sharing.

For page sharing, the kernel marks a shared page read-
only. When a process writes the page, the kernel stops
sharing the page and allocates a new page to the process
(similar to a copy-on-write mechanism). Ingens checks
the utilization for the huge page region enclosing the new
page and if it is highly utilized, it promotes the page
(while Linux would wait for asychronous promotion).

4.6 Proportional promotion manages contiguity

Ingens monitors and distributes memory contiguity fairly
among processes and VMs, employing techniques for
proportional fair sharing of memory with an idleness
penalty [81]. Each process has a share priority for mem-
ory that begins at an arbitrary but standard value (e.g,
10,000). Ingens allocates huge pages in proportion to the
share value. Ingens counts infrequently accessed pages as
idle memory and imposes a penalty for the idle memory.
An application that has received many huge pages but is
not using them actively does not get more.

We adapt ESX’s adjusted shares-per-page ratio [81] to
express our per-process memory promotion metric mathe-
matically as follows.

M =
S

H · (f + τ(1− f))
(2)

where S is a process’ (or virtual machine’s or con-
tainer’s) huge page share priority and H is the number
of bytes backed by huge pages allocated to the process.
(f +τ(1− f)) is a penalty factor for idle huge pages. f is
the fraction of idle huge pages relative to the total number
of huge pages used by this process (0≤ f ≤ 1) and τ , with
0 < τ ≤ 1, is a parameter to control the idleness penalty.
Larger values of M receive higher priority for huge page
promotion.

Intuitively, if two processes’ S value are similar and
one process has fewer huge pages (H is smaller), then the
kernel prioritizes promotion (or allocation and promotion)
of huge pages for that process. If S and H values are
similar among a group of processes, the process with
the largest fraction of idle pages has the smaller M , and

hence the lowest priority for obtaining new huge pages.
τ = 1 means M disregards idle memory while τ close
to 0 means M ’s value is inversely proportional to the
amount of idle memory.

A kernel thread (called Scan-kth) periodically pro-
files the idle fraction of huge pages in each process and
updates the value of M for fair promotion.

4.7 Fair promotion

Promote-kth performs fair allocation of contiguity using
the promotion metric. When contiguity is contended,
fairness is achieved when all processes have a priority-
proportional share of the available contiguity. Mathe-
matically this is achieved by minimizing O , defined as
follows:

O = ∑
i
(Mi−M̄)2 (3)

The Mi indicates the promotion metric of process/VM i
and M̄ is the mean of all process’ promotion metrics.
Intuitively, the formula characterizes how much process’
contiguity allocation (Mi) deviates from a fair state (M̄):
in a perfectly fair state, all the Mi equal M̄ , yielding a
0-valued O .

In practice, to optimize O , it suffices to iteratively se-
lect the process with the biggest Mi, scan its address
space to promote huge pages, and update Mi and O . It-
eration stops when O is close to 0 or when Promote-kth
cannot generate any additional huge pages (e.g., all pro-
cess are completely backed by huge pages).

An important benefit of this approach is that it does not
require a performance model and it applies equally well
to processes and virtual machines.

5 Implementation
Ingens is implemented in Linux 4.3.0 and contains new
mechanisms to support page utilization and access fre-
quency tracking. It also uses Linux infrastructure for huge
page page table mappings and memory compaction.

5.1 Huge page promotion

Promote-kth runs as a background kernel thread and
schedules huge page promotions (replacing Linux’s
khugepaged). Promote-kth maintains two priority lists:
high and normal. The high priority list is a global list
containing promotion requests from the page fault handler
and the normal priority list is a per-application list filled
in as Promote-kth periodically scans the address space.
The page fault handler or a periodic timer wakes Promote-
kth, which then examines the two lists and promotes in
priority order.

Ingens does not reserve contiguous memory in the page
fault handler. When the page fault handler requests a huge
page promotion, the physical memory backing the base
pages might not be contiguous. In this case, Promote-kth
allocates a new 2 MB contiguous physical memory region,

copies the data from the discontiguous physical memory,
and maps the contiguous physical memory into the pro-
cess’ virtual address space. After promotion, Promote-kth
frees the original discontiguous physical memory.

An application’s virtual address space can grow, shrink,
or be merged with other virtual address regions. These
changes make new opportunities for huge page promo-
tion which both Linux and Ingens detect by periodically
scanning address spaces in the normal priority list (Linux
in khugepaged, Ingens in Promote-kth). For example,
a virtual address region that is smaller than the size of a
huge page might merge with another region, allowing it
to be part of a huge page.

Promote-kth compares the promotion metric (§4.6) of
each application and selects the process with the highest
deviation from a fair state (§4.7). It scans 16 MB of pages
and sleeps for 10 seconds which is also Linux’s default
settings (i.e., the 1.6 MB/s in Table 4). After scanning
a process’ entire address space, Promote-kth records the
number of promoted huge pages and if an application has
too few promotions (zero in the prototype), Promote-kth
excludes the application from the normal priority list for
120 seconds. This mechanism prevents an adversarial
application that can monopolize Promote-kth. Such an
application would have a small number of huge pages and
would appear to be a good candidate to scan to increase
fairness (§4.7)).

5.2 Access frequency tracking

In 2015, Linux added an access bit tracking frame-
work [70] for version 4.3. The kernel adds an idle flag
for each physical page and uses hardware access bits to
track when a page remains unused. If the hardware sets
an access bit, the kernel clears the idle bit. The framework
provides APIs to query the idle flags and clear the access
bit. Scan-kth uses this framework to find idle memory
during a periodic scan of application memory. The default
period is 2 seconds. Scan-kth clears the access bits at the
beginning of the profiling period and queries the idle flag
at the end.

In the x86 architecture, clearing the access bit causes
a TLB invalidation for the corresponding page. Conse-
quently, frequent periodic scanning can have a negative
performance impact. To ameliorate this problem, Ingens
supports frequency-aware profiling and sampling. When
Scan-kth needs to clear the access bit of a page, it checks
whether the page is frequently accessed or not. If it is
not frequently accessed, Scan-kth clears the access bit,
otherwise it clears it with 20% probability. Ingens uses an
efficient hardware-based random number generator [18].

To verify that sampling reduces worst case overheads,
we run a synthetic benchmark which reads 10 GB mem-
ory randomly without any computation, and measure the
execution time for one million iterations. When Ingens

resets all access bits, the execution time of the workload
is degraded by 29%. Sampling-based scanning reduces
the overhead to 8%. In contrast to this worst-case mi-
crobenchmark, Section 6 shows that slowdowns of Ingens
on real workloads average 1%.

5.3 Limitations and future work

Linux supports transparent huge pages only for anony-
mous memory because huge page support for page cache
pages can significantly increase I/O traffic, potentially
offsetting the benefits of huge pages. If Linux adds huge
pages to the page cache, it will make sense to extend In-
gens to manage them with the goal of improving the read-
only page cache support (implemented in FreeBSD [68]),
while avoiding significant increases in I/O traffic for write-
back of huge pages which are sparsely modified.

Hardware support for finer-grain tracking of access and
dirty bits for huge pages would benefit Ingens. Hardware-
managed access and dirty bits for all base pages within a
huge page region could avoid wasted I/O on write-back
of dirty pages, and enable much better informed decisions
about when to demote a huge page or when huge pages
can be reclaimed fairly under memory pressure.

NUMA considerations. Ingens maintains Linux’s
NUMA heuristics, preferring pages from a node’s local
NUMA region, and refusing to allocate a huge page from
a different NUMA domain. All of our measurements are
within a single NUMA region.

Previous work has shown that if memory is shared
across NUMA nodes, huge pages may contribute to mem-
ory request imbalance across different memory controllers
and reduced locality of accesses, decreasing their perfor-
mance benefit [54]. This happens due to page-level false
sharing, where unrelated data is accessed on the same
page, and the hot page effect, which is exacerbated by
the large page size. The authors propose extensions to
Linux’ huge page allocation mechanism to balance huge
pages among NUMA domains and to split huge pages if
false sharing is detected or if they become too hot. These
extensions integrate nicely with Ingens. Scan-kth can al-
ready measure page access frequencies and Promote-kth
can check whether huge pages need to be demoted.

6 Evaluation
We evaluate Ingens using the applications in Table 1,
comparing against the performance of Linux’s huge page
support which is state-of-the-art. Experiments are per-
formed on two Intel Xeon E5-2640 v3 2.60GHz CPUs
(Haswell) with 64 GB memory and two 256 MB SSDs.
We use Linux 4.3 and Ubuntu 14.04 for both the guest
and host system. Intel supports multiple hardware page
sizes of 4 KB, 2 MB and 1 GB; our experiments use only
4 KB and 2 MB huge pages. We set the number of vCPUs
equal to the number of application threads.

42
9.

m
cf

Tu
nk

ra
nk

M
ov

ie
R

ec
m

d
S

V
M

R
ed

is
O

lio
M

on
go

D
B

N
ut

ch
B

la
ck

sc
ho

le
s

B
od

yt
ra

ck
C

an
ne

al
D

ed
up

Fa
ce

si
m

Fe
rr

et
Fl

ui
da

ni
m

at
e

Fr
eq

m
in

e
R

ay
tra

ce
S

tre
am

cl
us

te
r

S
w

ap
tio

ns
V

ip
s

X
26

4
Av

g.

0.0%

1.0%

2.0%

3.0%
S

lo
w

do
w

n
Ingens overhead

Figure 4: Performance slowdown of utilization-based pro-
motion relative to Linux when memory is not fragmented.

Background task CPU utilization
Proactive compaction 1.3%
Access bit tracking 11.4%

Table 8: CPU utilization of background tasks in Ingens.
For access bit tracking, Scan-kth scans memory of Mon-
goDB that uses 10.7GB memory.

We characterize the overheads of Ingens’s basic mech-
anisms such as access tracking and utilization-based
huge page promotion. We evaluate the performance of
utilization-based promotion and demotion and Ingens abil-
ity to provide fairness across applications using huge
pages. Finally, we show that Ingens’s access frequency-
based same page merging achieves good memory savings
while preserving most of the performance benefit of huge
pages. We use a single configuration to evaluate Ingens
which is consistent with our examples in Sections 4 and
5: utilization threshold is 90%, Scan-kth period is 10s,
access frequency tracking interval is 2 sec, and sampling
ratio is 20%. Proactive batched compaction happens when
FMFI is below 0.8, with an interval of 5 seconds; the max-
imum amount of compacted memory is 100MB; and a
page is frequently accessed if Ft ≥ 6.

6.1 Ingens overhead

Figure 4 shows the overheads introduced by Ingens for
memory intensive workloads. To evaluate the perfor-
mance of utilization-based huge page promotion in the
unfragmented case, we run a number of benchmarks and
compare their run time with Linux. Ingens’s utilization-
based huge page promotion slows applications down 3.0%
in the worst case and 0.7% on average. The slowdowns
stem primarily from Ingens not promoting huge pages
as aggressively as Linux, so the workload executes with
slower base pages for a short time until Ingens promotes
huge pages. A secondary overhead stems from the com-
putation of huge page utilization.

To verify that Ingens does not interfere with the perfor-
mance of “normal” workloads, we measure an average
performance penalty of 0.8% across the entire PARSEC
3.0 benchmark suite.

Linux Ingens
922.3 1091.9 (1.18×)

(a) Throughput of full operation mix (requests/sec and speedup
normalized to Linux).

Event view Homepage visit Tag search
Linux Ingens Linux Ingens Linux Ingens

Average 478 338 236 207 289 240
90th 605 354 372 226 417 299
MAX 694 649 379 385 518 507

(b) Latency (millisecond) of read-dominant operations.

Table 9: Performance result of Cloudstone WEB 2.0
Benchmark (Olio) when memory is fragmented.

Table 8 shows the CPU utilization of background tasks
in Ingens. We measure the CPU utilization across 1 sec-
ond intervals and take the average. For proactive com-
paction, we set Ingens to compact 100 MB of memory
every 2 seconds (which is more aggressive than the de-
fault of 5 seconds). CPU overhead of access bit tracking
depends on how many pages are scanned, so we measure
the CPU utilization of Scan-kth while running MongoDB
using 10.7 GB of memory.

6.2 Utilization-based promotion

To evaluate Ingens’s utilization-based huge page promo-
tion, we compare a mix of operations from the Cloudstone
WEB 2.0 benchmark, which simulates a social event web-
site. Cloudstone models a LAMP stack, consisting of a
web server (nginx), PHP, and MySQL. We run Cloudstone
in a KVM virtual machine and use the Rain workload gen-
erator [45] for load.

A study of the top million websites showed that in
2015 the average size exceeded 2 MB [50]. In light of
this, we modify Cloudstone to serve some web pages that
use about 2 MB of memory, enabling the benchmark to
make better use of huge pages. The Cloudstone bench-
mark consists of 7 web pages, and we only modify the
homepage and a page that displays social event details to
use 2 MB memory. The other pages remain unchanged.

We compare throughput and latency for Cloudstone on
Linux and Ingens when memory is fragmented from prior
activity (FMFI = 0.9). To cause fragmentation, we run a
program that allocates a large region of memory and then
partially frees it.

We use Cloudstone’s default operation mix: 85% read
(viewing events, visiting homepage, and searching event
by tag), 10% login, and 5% write (adding new events and
inviting people). Our test database has 7,000 events, 2,000
people, and 900 tags. Table 9 (a) shows the throughput
attained by the benchmark running on Linux and Ingens.
Ingens’s utilization-based promotion achieves a speedup
of 1.18× over Linux. Table 9 (b) shows average and tail

Linux-nohuge Linux Ingens-90% Ingens-70% Ingens-50%
12.2 GB 20.7 GB 12.3 GB 12.9 GB 17.8 GB

(a) Redis memory consumption in different configurations. The
percentage in the label is a utilization threshold.

Throughput 90th lat. 99th lat. 99.9th lat.
Linux-nohuge 19.0K 4 5 109
Linux 21.7K 3 4 8
Ingens-90% 20.9K 3 4 64
Ingens-70% 21.1K 3 4 55
Ingens-50% 21.6K 3 4 23

(b) Redis GET Performance: Throughput (operations/sec) and
latency (millisecond).

Table 10: Redis memory use and performance.

latency of the read operations in the benchmark. Ingens
reduces an average latency up to 29.2% over Linux. In
the tail, the reduction improves further, up to 41.4% at the
90th percentile.

Performance for Ingens improves because it reduces
the average page-fault latency by not compacting memory
synchronously in the page fault handler. We measure
461,383 page compactions throughout the run time of the
benchmark in Linux when memory is fragmented.

When memory is not fragmented, Ingens reduces
throughput by 13.4% and increases latency up to 18.1%
compared with Linux. The benchmark contains many
short-lived requests and Linux’s greedy huge page allo-
cation pays off by drastically reducing the total number
of page faults. Ingens is less aggressive about huge page
allocation to avoid memory bloat, so it incurs many more
page faults.

Ingens copes with this performance problem with an
adaptive policy. When memory fragmentation is below
0.5 Ingens mimics Linux’s aggressive huge page alloca-
tion. This policy restores Ingens’s performance to Linux’s
levels. However, while bloat (§3.2) is not a problem for
this workload, the adaptive policy increases risk of bloat
in the general case. Like any management problem, it
might not be possible to find a single policy that has every
desirable property for a given workload. We verified that
this policy performs similarly to the default policy used
in Table 4, but it is most appropriate for workloads with
many short-lived processes.

6.3 Memory bloating evalution

To evaluate Ingens’s ability to minimize memory bloating
without impacting performance, we evaluate the memory
use and throughput of a benchmark using the Redis key-
value store. Redis is known to be susceptible to memory
bloat, as its memory allocations are often sparse. To create
a sparse address space in our benchmark, we first populate
Redis with 2 million keys, each with 8 KB objects and

0 50 100 150 200 250
100
200
300
400
500
600
700
800
900

1000

H
ug

e
pa

ge
co

ns
um

p.
(M

B
) Ingens huge page promotion

Canneal-1
Canneal-2
Canneal-3

0 50 100 150 200 250

time (sec)

100
200
300
400
500
600
700
800
900

1000

H
ug

e
pa

ge
co

ns
um

p.
(M

B
) Linux huge page promotion

Canneal-1
Canneal-2
Canneal-3

Canneal-1 Canneal-2 Canneal-3
Linux 181 192 195
Ingens 186 186 187

Figure 5: Huge page consumption (MB) and execution
time (second). 3 instances of canneal (Parsec 3.0 bench-
mark) run concurrently and Promote-kth promotes huge
pages. Execution time in the table excludes data loading
time.

then delete 70% of the key space using a random pattern.
We then measure the GET performance using the bench-
mark tool shipped with Redis. For Ingens, we evaluate
different utilization thresholds for huge page promotion.

Table 10 shows that memory use for the 90% and 70%
utilization-based configurations is very close to the case
where only base pages are used. Only at 50% utiliza-
tion does Ingens approach the memory use of Linux’s
aggressive huge page promotion.

The throughput and latency of the utilization-based
approach is very close to using only huge pages. Only
in the 99.9th percentile does Ingens deviate from Linux
using huge pages only, while still delivering much better
tail latency than Linux using base pages only.

6.4 Fair huge page promotion

Ingens guarantees a fair distribution of huge pages. If
applications have the same share priority (§4.6), Ingens
provides the same amount of huge pages. To evaluate fair-
ness, we run a set of three identical applications concur-
rently with the same share priority and idleness parameter,
and measure the amount of huge pages each one holds at
any point in time.

Figure 5 shows that Linux does not allocate huge pages
fairly, it simply allocates huge pages to the first applica-
tion that can use them (Canneal-1). In fact, Linux asyn-
chronously promotes huge pages by scanning linearly
through each application’s address space, only consid-
ering the next application when it is finished with the
current application. Time 160 is when Linux has pro-

Policy Mem saving Performance slowdown H/M

KVM
(Linux)

1438 MB
(9.6%)

Tunkrank: 274 (12.7%)
MovieRecmd: 210 (6.5%)

SVM: 232 (20.2%)

Tunkrank: 66%
MovieRecmd: 10%

SVM: 72%

Huge page
sharing

317 MB
(2.1%)

Tunkrank: 243
MovieRecmd: 197

SVM: 193

Tunkrank: 99%
MovieRecmd: 99%

SVM: 99%

Ingens 1026 MB
(6.8%)

Tunkrank: 247 (1.6%)
MovieRecmd: 200 (1.5%)

SVM: 198 (2.5%)

Tunkrank: 90%
MovieRecmd: 79%

SVM: 94%

Table 11: Memory saving (MB) and performance (second)
trade off. H/M - huge page ratio out of total memory used.
Parentheses in the Mem saving column expresses the memory
saved as a percentage of the total memory (15 GB) allocated to
all three virtual machines.

moted almost all of Canneal-1’s address space to huge
pages so only then does it begin to allocate huge pages to
Canneal-2.

In contrast, Ingens promotes huge pages based on
the fairness objective described in Section 4.7 and thus
equally distributes the available huge pages to each appli-
cation. Fair distribution of huge pages translates to fair
end-to-end execution time as well. All applications finish
at the same time in Ingens, while Canneal-1 finishes well
before 2 and 3 on Linux.

6.5 Trade off of memory saving and performance

Finally, we evaluate the memory and performance trade-
offs of identical page sharing. We run a workload mix of
three different applications, each in its own virtual ma-
chine. We measure their memory use and performance
slowdown under three different OS configurations: (1)
KVM with aggressive page sharing, where huge pages
are demoted if underlying base pages can be shared. (2)
KVM where only pages of the same type may be shared
and huge pages are never broken up (huge page sharing).
(3) Ingens, where only infrequently used huge pages are
demoted for page sharing. To avoid unused memory sav-
ing, we intentionally fit guest physical memory size to
memory usages of the workloads.

Table 11 shows that KVM’s aggressive page sharing
saves the most memory (9.6%), but also cedes the most
performance (between 6.5% and 20.2% slowdown) when
compared to huge page sharing. When sharing only pages
of the same type, it saves memory only 2.1%. Finally,
Ingens allows us to save 6.8% of memory, while only
slowing down the application up to 2.5%. The main
reason for the low performance degradation is that the
ratio of huge pages to total pages remains high in Ingens,
due to its access frequency-based approach to huge page
demotion and instant promotion when Ingens stops page
sharing.

7 Related work
Virtual memory is an active research area. Our evidence
of performance degradation from address translation over-
heads is well-corroborated [44, 53, 47, 67].

Operating system support. Navarro et al. [68] imple-
ment OS support for multiple page sizes with contiguity-
awareness and fragmentation reduction as primary con-
cerns. They propose reservation-based allocation, allocat-
ing contiguous ranges of pages in advance, and deferring
promotion. Many of their ideas are widely used [80], and
it forms the basis of FreeBSD’s huge page support. In-
gens’s utilization-based promotion uses a util bitvector
that is similar to the population map [68]. In contrast
to that work, Ingens does not use reservation-based al-
location, decouples huge page allocation from promo-
tion decisions, and redistributes contiguity fairly when it
becomes available (e.g., after process termination). In-
gens has higher performance because it promotes more
huge pages; it does not require promoted pages to be
read-only or completely modified (§3.4). Features in mod-
ern systems such as memory compaction and same-page
merging [63] pose new challenges not addressed by this
previous work.

Gorman et al. [56] propose a placement policy for an
OS’s physical page allocator that mitigates fragmentation
and promotes contiguity by grouping pages according to
relocatability. Subsequent work [57] proposes a software-
exposed interface for applications to explicitly request
huge pages like libhugetlbfs [65]. The foci of In-
gens, including trade-offs between memory sharing and
performance, and unfair allocation of huge pages are un-
addressed by previous work.

Hardware support. TLB miss overheads can be re-
duced by accelerating page table walks [42, 46] or re-
ducing their frequency [52]; by reducing the number of
TLB misses (e.g. through prefetching [48, 60, 74], pre-
diction [69], or structural change to the TLB [79, 72, 71]
or TLB hierarchy [47, 66, 78, 39, 38, 61, 44, 53]). Multi-
page mapping techniques [79, 72, 71] map multiple pages
with a single TLB entry, improving TLB reach by a small
factor (e.g. to 8 or 16); much greater improvements to
TLB reach are needed to deal with modern memory sizes.
Direct segments [44, 53] extend standard paging with a
large segment to map the majority of an address space
to a contiguous physical memory region, but require ap-
plication modifications and are limited to workloads able
to a single large segment. Redundant memory mappings
(RMM) [61] extend TLB reach by mapping ranges of
virtually and physically contiguous pages in a range TLB.
The level of additional architectural support is significant,
while Ingens works on current hardware.

A number of related works propose hardware support
to recover and expose contiguity. GLUE [73] groups

contiguous, aligned small page translations under a single
speculative huge page translation in the TLB. Speculative
translations, (similar to SpecTLB [43]) can be verified
by off-critical-path page-table walks, reducing effective
page-table walk latency. GTSM [49] provides hardware
support to leverage contiguity of physical memory extents
even when pages have been retired due to bit errors. Were
such features to become available, hardware mechanisms
for preserving contiguity could reduce overheads induced
by proactive compaction in Ingens.

Architectural assists are ultimately complementary to
our own work. Hardware support can help, but higher-
level coordination of hardware mechanisms by software
is a fundamental necessity. Additionally, as none of these
assists are likely to be realized in imminently available
hardware, using techniques such as those we propose in
Ingens are a de facto necessity.

8 Conclusion
Hardware vendors are betting on huge pages to make
address translation overheads acceptable as memory ca-
pacities continue to grow. Ingens provides principled, co-
ordinated transparent huge page support for the operating
system and hypervisor, enabling challenging workloads
to achieve the expected benefits of huge pages, without
harming workloads that are well served by state-of the art
huge page support. Ingens reduces tail-latency and bloat,
while improving fairness and performance.

Acknowledgement
For their insights and comments we thank readers Mark
Silberstein, Nadav Amit, Reza Taheri, Kathryn S. McKin-
ley, the anonymous reviewers, and our shepherd Sasha
Fedorova. We acknowledge funding from NSF grants
CNS-1228843 and CNS-1618563.

References
[1] http://www.7-cpu.com/cpu/Skylake.

html. [Accessed April, 2016].

[2] http://www.7-cpu.com/cpu/Haswell.
html. [Accessed April, 2016].

[3] Apache Cloudstack. https://en.wikipedia.
org/wiki/Apache_CloudStack. [Accessed
April, 2016].

[4] Apache Hadoop. http://hadoop.apache.
org/. [Accessed April, 2016].

[5] Apache Spark. http://spark.apache.org/
docs/latest/index.html. [Accessed April,
2016].

[6] Application-friendly kernel interfaces. https:
//lwn.net/Articles/227818/. [March,
2007].

[7] Cloudera recommends turning off mem-
ory compaction due to high CPU utiliza-
tion. http://www.cloudera.com/
documentation/enterprise/latest/
topics/cdh_admin_performance.html.
[Accessed April, 2016].

[8] Cloudsuite. http://parsa.epfl.ch/
cloudsuite/graph.html. [Accessed April,
2016].

[9] CouchBase recommends disabling huge pages.
http://blog.couchbase.com/often-
overlooked-linux-os-tweaks. [March,
2014].

[10] Data Plane Development Kit. http://www.
dpdk.org/. [Accessed April-2016].

[11] DokuDB recommends disabling huge pages.
https://www.percona.com/blog/
2014/07/23/why-tokudb-hates-
transparent-hugepages/. [July, 2014].

[12] Exponential moving average. https://en.
wikipedia.org/wiki/Moving_average#
Exponential_moving_average. [Accessed
April, 2016].

[13] High CPU utilization in Hadoop due to transparent
huge pages. https://www.ghostar.org/
2015/02/transparent-huge-pages-on-
hadoop-makes-me-sad/. [February, 2015].

[14] High CPU utilization in Mysql due to transparent
huge pages. http://developer.okta.com/
blog/2015/05/22/tcmalloc. [May, 2015].

http://www.7-cpu.com/cpu/Skylake.html
http://www.7-cpu.com/cpu/Skylake.html
http://www.7-cpu.com/cpu/Haswell.html
http://www.7-cpu.com/cpu/Haswell.html
https://en.wikipedia.org/wiki/Apache_CloudStack
https://en.wikipedia.org/wiki/Apache_CloudStack
http://hadoop.apache.org/
http://hadoop.apache.org/
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
https://lwn.net/Articles/227818/
https://lwn.net/Articles/227818/
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_admin_performance.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_admin_performance.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_admin_performance.html
http://parsa.epfl.ch/cloudsuite/graph.html
http://parsa.epfl.ch/cloudsuite/graph.html
http://blog.couchbase.com/often-overlooked-linux-os-tweaks
http://blog.couchbase.com/often-overlooked-linux-os-tweaks
http://www.dpdk.org/
http://www.dpdk.org/
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://www.ghostar.org/2015/02/transparent-huge-pages-on-hadoop-makes-me-sad/
https://www.ghostar.org/2015/02/transparent-huge-pages-on-hadoop-makes-me-sad/
https://www.ghostar.org/2015/02/transparent-huge-pages-on-hadoop-makes-me-sad/
http://developer.okta.com/blog/2015/05/22/tcmalloc
http://developer.okta.com/blog/2015/05/22/tcmalloc

[15] Huge page support in Mac OS X. https:
//developer.apple.com/legacy/
library/documentation/Darwin/
Reference/ManPages/man2/mmap.2.
html. [Accessed April-2016].

[16] IBM cloud with KVM hypervisor. http:
//www.networkworld.com/article/
2230172/opensource-subnet/red-
hat-s-kvm-virtualization-proves-
itself-in-ibm-s-cloud.html. [March,
2010].

[17] IBM recommends turning off huge pages
due to high CPU utilization. http://www-
01.ibm.com/support/docview.wss?
uid=swg21677458. [July, 2014].

[18] Intel hardware random number generator.
https://software.intel.com/en-
us/articles/intel-digital-random-
number-generator-drng-software-
implementation-guide. [May, 2014].

[19] Intel HiBench. https://github.com/
intel-hadoop/HiBench/tree/master/
workloads. [Accessed April, 2016].

[20] Jemalloc. http://www.canonware.com/
jemalloc/. [Accessed April-2016].

[21] Large-page support in Windows. https://
msdn.microsoft.com/en-us/library/
windows/desktop/aa366720(v=vs.85)
.aspx. [Accessed April-2016].

[22] Liblinear. https://www.csie.ntu.edu.
tw/˜cjlin/liblinear/. [Accessed April,
2016].

[23] MongoDB. https://www.mongodb.com/.
[Accessed April, 2016].

[24] MongoDB recommends disabling huge pages.
https://docs.mongodb.org/manual/
tutorial/transparent-huge-pages/.
[Accessed April, 2016].

[25] Movie recommendation with Spark. http:
//ampcamp.berkeley.edu/big-data-
mini-course/movie-recommendation-
with-mllib.html. [Accessed April, 2016].

[26] NuoDB recommends disabling huge pages. http:
//www.nuodb.com/techblog/linux-
transparent-huge-pages-jemalloc-
and-nuodb. [May, 2014].

[27] OpenStack. https://
openvirtualizationalliance.org/
what-kvm/openstack. [Accessed April-
2016].

[28] PARSEC 3.0 benchmark suite. http://parsec.
cs.princeton.edu/. [Accessed April, 2016].

[29] Redis. http://redis.io/. [Accessed April,
2016].

[30] Redis recommends disabling huge pages. http:
//redis.io/topics/latency. [Accessed
April, 2016].

[31] Redis SSD swap discussion. http://antirez.
com/news/52. [March, 2013].

[32] SAP IQ recommends disabling huge pages. http:
//scn.sap.com/people/markmumy/
blog/2014/05/22/sap-iq-and-linux-
hugepagestransparent-hugepages.
[May, 2014].

[33] SPEC CPU 2006. https://www.spec.org/
cpu2006/. [Accessed April, 2016].

[34] Splunk recommends disabling huge
pages. http://docs.splunk.com/
Documentation/Splunk/6.1.3/
ReleaseNotes/SplunkandTHP. [December,
2013].

[35] Thread-caching malloc. http://goog-
perftools.sourceforge.net/doc/
tcmalloc.html. [Accessed April-2016].

[36] Transparent huge pages in 2.6.38. https://lwn.
net/Articles/423584/. [January, 2011].

[37] VoltDB recommends disabling huge
pages. https://docs.voltdb.com/
AdminGuide/adminmemmgt.php. [Accessed
April, 2016].

[38] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh.
Revisiting hardware-assisted page walks for virtual-
ized systems. In International Symposium on Com-
puter Architecture (ISCA), 2012.

[39] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh.
Fast two-level address translation for virtualized sys-
tems. In IEEE Transactions on Computers, 2015.

[40] AMD. AMD-V Nested Paging, 2010. http://
developer.amd.com/wordpress/media/
2012/10/NPT-WP-1%201-final-TM.pdf.

https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/mmap.2.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www.networkworld.com/article/2230172/opensource-subnet/red-hat-s-kvm-virtualization-proves-itself-in-ibm-s-cloud.html
http://www-01.ibm.com/support/docview.wss?uid=swg21677458
http://www-01.ibm.com/support/docview.wss?uid=swg21677458
http://www-01.ibm.com/support/docview.wss?uid=swg21677458
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://github.com/intel-hadoop/HiBench/tree/master/workloads
https://github.com/intel-hadoop/HiBench/tree/master/workloads
https://github.com/intel-hadoop/HiBench/tree/master/workloads
http://www.canonware.com/jemalloc/
http://www.canonware.com/jemalloc/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.mongodb.com/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
https://openvirtualizationalliance.org/what-kvm/openstack
https://openvirtualizationalliance.org/what-kvm/openstack
https://openvirtualizationalliance.org/what-kvm/openstack
http://parsec.cs.princeton.edu/
http://parsec.cs.princeton.edu/
http://redis.io/
http://redis.io/topics/latency
http://redis.io/topics/latency
http://antirez.com/news/52
http://antirez.com/news/52
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
http://scn.sap.com/people/markmumy/blog/2014/05/22/sap-iq-and-linux-hugepagestransparent-hugepages
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
http://docs.splunk.com/Documentation/Splunk/6.1.3/ReleaseNotes/SplunkandTHP
http://docs.splunk.com/Documentation/Splunk/6.1.3/ReleaseNotes/SplunkandTHP
http://docs.splunk.com/Documentation/Splunk/6.1.3/ReleaseNotes/SplunkandTHP
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://lwn.net/Articles/423584/
https://lwn.net/Articles/423584/
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf

[41] Jean Araujo, Rubens Matos, Paulo Maciel, Rivalino
Matias, and Ibrahim Beicker. Experimental eval-
uation of software aging effects on the eucalyptus
cloud computing infrastructure. In Middleware In-
dustry Track Workshop, 2011.

[42] Thomas W. Barr, Alan L. Cox, and Scott Rixner.
Translation caching: Skip, don’t walk (the page
table). In International Symposium on Computer
Architecture (ISCA), 2010.

[43] Thomas W. Barr, Alan L. Cox, and Scott Rixner.
Spectlb: A mechanism for speculative address trans-
lation. In International Symposium on Computer
Architecture (ISCA), 2011.

[44] Arkapravu Basu, Jayneel Gandhi, Jichuan Chang,
Mark D. Hill, and Michael M. Swift. Efficient vir-
tual memory for big memory servers. In Interna-
tional Symposium on Computer Architecture (ISCA),
2013.

[45] Aaron Beitch, Brandon Liu, Timothy Yung, Rean
Griffith, Armando Fox, and David Patterson. Rain:
A workload generation toolkit for cloud computing
applications. In U.C. Berkeley Technical Publica-
tions (UCB/EECS-2010-14), 2010.

[46] Abhishek Bhattacharjee. Large-reach memory man-
agement unit caches. In International Symposium
on Microarchitecture, 2013.

[47] Abhishek Bhattacharjee, Daniel Lustig, and Mar-
garet Martonosi. Shared last-level TLBs for chip
multiprocessors. In IEEE International Sympo-
sium on High Performance Computer Architecture
(HPCA), 2011.

[48] Abhishek Bhattacharjee and Margaret Martonosi.
Characterizing the TLB behavior of emerging par-
allel workloads on chip multiprocessors. In Inter-
national Conference on Parallel Architectures and
Compilation Techniques (PACT), 2009.

[49] Yu Du, Miao Zhou, B.R. Childers, D. Mosse,
and R. Melhem. Supporting superpages in non-
contiguous physical memory. In IEEE International
Symposium on High Performance Computer Archi-
tecture (HPCA), 2015.

[50] Tammy Everts. The average web page is more
than 2 MB size. https://www.soasta.com/
blog/page-bloat-average-web-page-
2-mb/. [June, 2015].

[51] Michael Ferdman, Almutaz Adileh, Onur Kocberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevd-
jic, Cansu Kaynak, Adrian Daniel Popescu, Anasta-
sia Ailamaki, and Babak Falsafi. Clearing the clouds:

A study of emerging scale-out workloads on modern
hardware. In Proceedings of the Seventeenth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS XVII, pages 37–48, New York, NY, USA,
2012. ACM.

[52] Jayneel Gandhi, , Mark D. Hill, and Michael M.
Swift. Exceeding the best of nested and shadow
paging. In International Symposium on Computer
Architecture (ISCA), 2016.

[53] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and
Michael M. Swift. Efficient memory virtualization.
In International Symposium on Microarchitecture,
2014.

[54] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant,
Justin Funston, Alexandra Fedorova, and Vivien
Quéma. Large pages may be harmful on numa sys-
tems. In Proceedings of the 2014 USENIX Con-
ference on USENIX Annual Technical Conference,
USENIX ATC’14, pages 231–242, Berkeley, CA,
USA, 2014. USENIX Association.

[55] Joseph E. Gonzalez, Yucheng Low, Haijie Gu,
Danny Bickson, and Carlos Guestrin. Powergraph:
Distributed graph-parallel computation on natural
graphs. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 12), pages 17–30, Hollywood,
CA, 2012. USENIX.

[56] Mel Gorman and Patrick Healy. Supporting super-
page allocation without additional hardware support.
In Proceedings of the 7th International Symposium
on Memory Management, 2008.

[57] Mel Gorman and Patrick Healy. Performance charac-
teristics of explicit superpage support. In Workshorp
on the Interaction between Operating Systems and
Computer Architecture (WIOSCA), 2010.

[58] Mel Gorman and Andy Whitcroft. The what, the
why and the where to of anti-fragmentation. In Linux
Symposium, 2005.

[59] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developers Manual, 2016. https://
www-ssl.intel.com/content/dam/www/
public/us/en/documents/manuals/64-
ia-32-architectures-software-
developer-manual-325462.pdf.

[60] Gokul B. Kandiraju and Anand Sivasubramaniam.
Going the distance for TLB prefetching: An
application-driven study. In International Sympo-
sium on Computer Architecture (ISCA), 2002.

https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/
https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/
https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

[61] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar,
Adrin Cristal, Mark D. Hill, Kathryn S. McKinley,
Mario Nemirovsky, Michael M. Swift, and Osman
nsal. Redundant memory mappings for fast access
to large memories. In International Symposium on
Computer Architecture (ISCA), 2015.

[62] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and
Anthony Liguori. KVM: The linux virtual machine
monitor. In Linux Symposium, 2007.

[63] Kernel Same-page Merging. https://en.
wikipedia.org/wiki/Kernel_same-
page_merging. [Accessed April, 2016].

[64] Ching-Pei Lee and Chih-Jen Lin. Large-scale linear
RankSVM. Neural Comput., 26(4):781–817, April
2014.

[65] Huge Pages Part 2 (Interfaces). https://lwn.
net/Articles/375096/. [February, 2010].

[66] Daniel Lustig, Abhishek Bhattacharjee, and Mar-
garet Martonosi. TLB improvements for chip multi-
processors: Inter-core cooperative prefetchers and
shared last-level TLBs. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 2013.

[67] Timothy Merrifield and H. Reza Taheri. Perfor-
mance implications of extended page tables on vir-
tualized x86 processors. In Proceedings of the12th
ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’16, pages
25–35, New York, NY, USA, 2016. ACM.

[68] Juan Navarro, Sitaram Iyer, Peter Druschel, and
Alan Cox. Practical, transparent operating system
support for superpages. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), 2002.

[69] M.-M. Papadopoulou, Xin Tong, A. Seznec, and
A. Moshovos. Prediction-based superpage-friendly
TLB designs. In IEEE International Symposium on
High Performance Computer Architecture (HPCA),
2015.

[70] Idle Page Tracking. http://lxr.
free-electrons.com/source/
Documentation/vm/idle_page_
tracking.txt. [November, 2015].

[71] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert,
and Gabriel H. Loh. Increasing TLB reach by ex-
ploiting clustering in page translations. In IEEE In-

ternational Symposium on High Performance Com-
puter Architecture (HPCA), 2014.

[72] Binh Pham, Viswanathan Vaidyanathan, Aamer
Jaleel, and Abhishek Bhattacharjee. CoLT: Coa-
lesced large-reach TLBs. In International Sympo-
sium on Microarchitecture, 2012.

[73] Binh Pham, Jan Vesely, Gabriel Loh, and Abhishek
Bhattacharjee. Large pages and lightweight mem-
ory management in virtualized systems: Can you
have it both ways? In International Symposium on
Microarchitecture, 2015.

[74] Ashley Saulsbury, Fredrik Dahlgren, and Per Sten-
ström. Recency-based TLB preloading. In Interna-
tional Symposium on Computer Architecture (ISCA),
2000.

[75] Tom Shanley. Pentium Pro Processor System Archi-
tecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 1996.

[76] Richard L. Sites and Richard T. Witek. ALPHA ar-
chitecture reference manual. Digital Press, Boston,
Oxford, Melbourne, 1998.

[77] Will Sobel, Shanti Subramanyam, Akara Suchar-
itakul, Jimmy Nguyen, Hubert Wong, Arthur
Klepchukov, Sheetal Patil, O Fox, and David Patter-
son. Cloudstone: Multi-platform, multi-language
benchmark and measurement tools for web 2.0,
2008.

[78] Shekhar Srikantaiah and Mahmut Kandemir. Syner-
gistic tlbs for high performance address translation
in chip multiprocessors. In International Symposium
on Microarchitecture, 2010.

[79] M. Talluri and M. D. Hill. Surpassing the TLB
performance of superpages with less operating sys-
tem support. In International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS), 1994.

[80] Transparent Hugepages. https://lwn.net/
Articles/359158/. [October, 2009].

[81] Carl A. Waldspurger. Memory resource manage-
ment in VMware ESX server. In USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), 2002.

https://en.wikipedia.org/wiki/Kernel_same-page_merging
https://en.wikipedia.org/wiki/Kernel_same-page_merging
https://en.wikipedia.org/wiki/Kernel_same-page_merging
https://lwn.net/Articles/375096/
https://lwn.net/Articles/375096/
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
http://lxr.free-electrons.com/source/Documentation/vm/idle_page_tracking.txt
https://lwn.net/Articles/359158/
https://lwn.net/Articles/359158/

	Introduction
	Background
	Virtual memory hardware trends
	Operating system support for huge pages
	Hypervisor support for huge pages
	Performance improvement from huge pages

	Current huge page problems
	Page fault latency and synchronous promotion
	Increased memory footprint (bloat)
	Huge pages increase fragmentation
	Comparison with FreeBSD huge page support
	Unfair performance
	Memory sharing vs. performance

	Design
	Monitoring space and time
	Fast page faults
	Utilization-based promotion (mitigate bloat)
	Proactive batched compaction (reduce fragmentation)
	Balance page sharing with performance
	Proportional promotion manages contiguity
	Fair promotion

	Implementation
	Huge page promotion
	Access frequency tracking
	Limitations and future work

	Evaluation
	Ingens overhead
	Utilization-based promotion
	Memory bloating evalution
	Fair huge page promotion
	Trade off of memory saving and performance

	Related work
	Conclusion

