Chapter

LU Factorization

In this chapter, we will use the insights into how blocked matrix-matrix and matrix-vector
multiplication works to derive and state algorithms for solving linear systems in a more
concise way that translates more directly into algorithms.

The idea is that, under circumstances to be discussed later, a matrix A € R™*" can be
factored into the product of two matrices L,U € R™*"™

A=LU,

where L is unit lower triangular (it has ones on the diagonal) and U is upper triangular. When
solving the linear system of equations (in matrix notation) Az = b, one can substitute A =
LU to find that (LU)x = b. Now, using the associative properties of matrix multiplication,
we find that L(Ux) = b. Substituting in z = Uz, this means that Lz = b. Thus, solving
Ax = b can be accomplished via the steps

e Solve Lz = b; followed by
e Solve Uz = z.

What we will show is that this process is equivalent to Gaussian elimination with the aug-
mented system ( A ‘ b ) followed by backward substitution.

Next, we will discuss how to overcome some of the conditions under which the precedure
breaks down, leading to LU factorization with pivoting.

The reader will notice that this chapter starts where the last chapter ended: with A = LU
and how to compute this decomposition more directly. We will show how starting from this
point leads directly to the algorithm in Figure 3.6. We then work backwards, exposing once
again how Gauss transforms fit into the picture. This allows us to then introduce swapping
of equations (pivoting) into the basic algorithm. So, be prepared for seeing some of the same
material again, under a slightly different light.
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4.1 Gaussian Elimination Once Again

In Figure 4.1 we illustrate how Gaussian Elimination is used to transform a linear system
of three equations in three unknowns into an upper triangular system by considering the
problem

—2x0— x1t Xx2= 6

—4dxo+4x1+7x2=-3

e Step 1: A multiple of the first row is substracted from the second row to eliminate the
“xo” term. This multiple is computed from the coefficient of the term to be eliminated
and the coefficient of the same term in the first equation.

e Step 2: Similarly, a multiple of the first row is substracted from the third row.

e Step 3: A multiple of the second row is substracted from the third row to eliminate
the “x;1” term.

This leaves the upper triangular system

—2X0— X1+ X2= 6
—3x1—2x2= 9
X2= 3

which is easier to solve, via backward substitution to be discussed later.

In Figure 4.2 we again show how it is not necessary to write down the entire linear equa-
tions: it suffices to perform Gaussian elimination on the matrix of coefficients, augmented
by the right-hand side.

4.2 LU factorization

Next, let us consider the computation of the LU factorization of a square matrix. We will
ignore for now when this factorization can be computed, and focus on the computation itself.

Assume A € R™" is given and that L and U are to be computed such that A = LU,
where L € R™ " is unit lower triangular and U € R™*" is upper triangular. We derive an
algorithm for computing this operation by partitioning

T T
Q11 | Q19 1 0 V11 | Uqg
A— , L — , and U — ,
( ag | Aaz ) ( lo1 | Lao ) ( 0 | Ua >
where we use our usual notation that lower-case Greek letter denote scalars, lower-case
Roman letters vectors, and upper-case Roman letters matrices. Now, A = LU implies (using
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’ Step | Current system \ Operation ‘
—2X0— X1t X2= 6 2X0—2x1—3x2= 3
1 2X0—2x1—3x2= 3 — (&) x(=2x0— xa+ x2= 6)
—4X0+4X1—|—7X2:—3 —3X1—2X2: 9
—2X0— X1t Xxo= 6 2x0—2x1—3x2= 3
2 —3x1—2x2= 9 - (:—3> X (—4dxo+4x1+Tx2= —3)
—4xo+4x1+7Tx2=—3 6x1+5x2=—15
—2x0— X1+ X2= 6 6x1+5x2=—15
3 —3x1—2x2= 9 —(5) x(=3x1—2x2= 9)
6x1+5x2=—15 Xe= 3
—2x0— x1t X2= 6
4 —3X1—2X2: 9
X2= 3

Figure 4.1: Gaussian Elimination on a linear system of three equations in three unknowns.

’ Step I Current system \ Multiplier \ Operation ‘
-2 -1 1 6 2 -2 -3 3
1 2 -2 -3 3 2 =-1 —1x(=2 =1 1 6)
-4 4 7| =3 0 -3 -2 9
-2 -1 1 6 —4 4 7 =3
2 0 —3 -2 9 =2=2] —(2)x(-2 -1 1 6)
-4 4 7| =3 0 6 5 —15
-2 -1 1 6 0 6 5 —15
3 0 -3 =2 9 L=—-2] —(-2)x(0 =3 -2 9)
0 6 5|-—15 0 0 1 3
-2 -1 1] 6
4 0 -3 —2| 9
0 0 1| 3

Figure 4.2: Gaussian Elimination with an augmented matrix of coefficients. (Compare and
contrast with Figure 4.1.
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what we learned about multiplying matrices that have been partitioned into submatrices)

A L U LU
— s - N s ~ %
(=Fe) * Go) 1)~ ot

agy | Agz lo1 ‘ Lo 0 ‘ Uao la1vn ‘ lzluipz + LoUs )

For two matrices to be equal, their elements must be equal, and therefore, if they are parti-
tioned conformally, their submatrices must be equal:
o] = V11 ‘ ajy = Uy
a1 = larv1; ‘ Agy = 121U1T2 + LoaUs

or, rearranging,
‘ T T

V11 = 01 Uy = Aq9

— — T -
la1 = ag1 /v ‘ LyoUsy = Agy — loyuiy

This suggests the following steps for overwriting a matrix A with its LU factorization:
T
11 | Q39
A— )
( a1 | Az )

[} Update A22 = A22 - agla{z(: A22 — lQlu{Q).

e Partition

e Update as; = ag1/c1(= la1).

e Overwrite Ags with Loy and Uy by continuing recursively with A = Aogs.

This will leave U in the upper triangular part of A and the strictly lower triangular part of
L in the strictly lower triangular part of A. (Notice that the diagonal elements of L need
not be stored, since they are known to equal one.)

This algorithm is presented in Figure 4.3 as a loop-based algorithm.

Example 4.1 The LU factorization algorithm in Figure 4.3 is illustrated in Figure 4.4 for
the coefficient matrix from Figure 4.1. Examination of the computations in Figure 4.2
and Figure 4.4 highlights how Gaussian elimination and LU factorization require the same
computations on the coefficient matrix. To make it easy to do this comparison, we repeat
these figures in Figures. 4.5-4.6.

Of course, we arrive at the same conclusion (that Gaussian elimination on the coefficient
matrix is the same as LU factorization on that matrix) by comparing the algorithms in
Figure 4.3 to Figure 3.6.

Remark 4.2 LU factorization and Gaussian elimination with the coefficient matrix are
one and the same computation.
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A :=LU_uNB(A4)

A A
Partition A — ( L IR )

Apr | ABr
where A7pis 0x0

while m(Ar,) <m(A) do
Repartition

Ago | aor | Aoz

ATL ATR T T
a1 ) - Qg | @11 | A1
BL BR A A

20 | @21 22

where «a;;is1 x 1

a21 ‘= Cl21/0411 (Z l21)
Agg = Agy — a21af2 (Z Agy — 121G1T2)

Continue with
Ao Apo

o1
ATL ATR T T
BL BR A A
20 | 21 22

endwhile

Figure 4.3: Algorithm for computing the LU factorization. Notice that this is exactly the
algorithm in Figure 3.6.

Ago | a0 | Aoz

T T T
Step A1g | 11 | Qqg agl/an A22 — Q21074
Ay | a | Ago

| () - G
(2= (5) (% A

-4 4 7

5
—2]-1] 1
3 [ -3] -2 (6) /(—3) = (-2 (5);21_)2) 2
.| 6] 5
—2 1] 1
o =3| -2
2 -2 1

Figure 4.4: LU factorization of a 3 x 3 matrix. Here, “Step” refers to the corresponding step
for Gaussian Elimination in Figure 4.2
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’ Step | Current system ‘ Multiplier ‘ Operation
-2 -1 1 6 2 -2 -3 3
1 ( 2 -2 -3 3 2 =-1 —1x(-2 -1 1  6)
-4 4 7| =3 0 -3 =2 9
-2 -1 1 6 -4 4 7 =3
2 ( 0 —3 -2 9 ==2] —(2)x(-2 -1 1 6)
-4 4 7| -3 0 6 5 —15
-2 -1 1 6 0O 6 5 —15
3 0 -3 =2 9 _% =—-2|—(-2)x(0 =3 =2 9)
0O 6 5|-—15 0O 0 1 3
-2 -1 1 6
4 0 -3 -2 9
0 0 1 3

Figure 4.5: Figure 4.2 again: Gaussian Elimination with an augmented matrix of coefficients.

Ago | aor | Aoz
Step aly | a11 | al, ag1 /oy Agy — agiaf,
Agy | az1 | Aao
—T T3 (—2 —3)_(—1) (-1 1)
1-2 2] —2 —3 <2>/(—2)=(_1) b .
—4 2 -3 -2
—4 4 7 :( 6 5)
21 -1 1
9)—(—2) (—2
3 o -3] -2 (6) /(=3) = (—2) ():El)) (-2)
2 6 )
-2 -1 1
1 =3 -2
2 -2 1

Figure 4.6: LU factorization of a 3 x 3 matrix. Compare with the above Gaussian elimination
with the coefficient matrix!
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Stored multipliers
Step and right-hand side Operation
- — —| 6 3
1 -1 - -] 3 —(=1)x( 6)
2 2 — | —3 -9
- — —| 6 -3
2 1= =19 —(2)x( 6)
2 > —|-3 —15
- - - 6 —15
3 = = 9 —(=2)x( 9)
: —2 — | =15 3
- — — |6
4 1= =19
2 2 - 3

Figure 4.7: Forward substitution with the multipliers computed for a linear system in Fig-
ure 4.2. Compare to what happens to the right-hand side (the part to the right of the |) in
Figure 4.2.

4.3 Forward Substitution = Solving a Unit Lower Triangular
System

It is often the case that the coefficient matrix for the linear system is available a prior: and
the right-hand side becomes available later. In this case, one may want to perform Gaussian
elimination without augmenting the system with the right-hand-side or, equivalently, LU
factorization on the coefficient matrix. In Figure 4.7 we illustrate that if the multipliers are
stored, typically over the elements that were zeroed when a multiplier was used, then the
computations that were performed during Gaussian Elimination can be applied a postiori
(afterwards), once the right-hand side becomes available. This process is often referred to
as forward substitution.

Next, we show how forward substitution is the same as solving the linear system Lz = b
where b is the right-hand side and L is the matrix that resulted from the LU factorization
(and is thus unit lower triangular, with the multipliers from Gaussian Elimination stored
below the diagonal).

Given unit lower triangular matrix L € R™™ and vectors z,b € R", consider the equation
Lz = b where L and b are known and z is to be computed. Partition

110 G Sl
L—><l21 L22>, Z—>(Z2>, and b—>(b2>

(Note: the horizontal line here partitions the result. It is not a division.) Now, Lz = b
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implies
b L Lz
—— o -~ 7\ ~ 7N ~
) G ) e
by lo1 | Lo 22 211 + Lagzo
so that

(b ) o (828 )
by = l21C1 + Las2o 29 =by —l1Ci )~

This suggests the following steps for overwriting the vector b with the solution vector z:

1 0 B
L — < - L22) and b — (b2 )

e Update by = by — fyloy (this is an AXPY operation!).

e Partition

e Continue recursively with L = Loy and b = bs.

This algorithm is presented as an iteration using our notation in Figure 4.8. It is il-
lustrated for the matrix L that results from Equation (4.1) in Figure 4.9. Examination
of the computations in Figure 4.7 on the right-hand-side and 4.9 highlights how forward
substitution and the solution of Lz = b are related: they are the samel!

Exercise 4.3 Usehttp://wuw.cs.utexas.edu/users/flame/Spark/ to write a FLAME®@Qlab
code for computing the solution of Lx = b, overwriting b with the solution and assuming
that L is unit lower triangular.

Exercise 4.4 Modify the algorithm in Figure 4.8 so that it solves Lz = b when L is lower
triangular matrix (not unit lower triangular). Next implement it using FLAME@Qlab.

4.4 Backward Substitution = Solving an Upper Triangular
System

Next, let us consider how to solve a linear system Uz = b and how it is the same as backward
substitution.

Given upper triangular matrix U € R™" and vectors x,b € R", consider the equation
Uz = b where U and b are known and x is to be computed. Partition

T
(Y| Ui (X N il
U (0 U22)’ T (@) and b (b2)'
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Algorithm: [b] := LTRSV_UNB(L, b)

Lty

Partition L — (

while m(Lry) <m(L) do
Repartition

( Lrp | O ) .
Lpr | Ler

by
)’bﬁ(bB

Lpr | Lpr
where Ly is 0 x 0, by has 0 rows

Lo 0 | O
ol Al o
Lo | lo1 | L2

where \; is 1 x 1, 3; has 1 row

by == by — 51521

Continue with
(LTL 0 >
-
Lpr | Ler

endwhile

Log| O 0
l?() )\11 0
L20 l21 L22

Figure 4.8: Algorithm for triangular solve with unit lower triangular matrix.

Loo| 0 0 bo
Step x| 0 B by — loy 1
LQO 121 L22 b2
1[ 00 6
1-2 —1[ 10 3 (_g) — (_;) (6) = (—12
21-2 1 -3
1 0 6
3 -1 1]0 9 (=15) — (=2) (9) = (3)
22711 —15
1 0 6
-1 1]0 9
2 21 3

Figure 4.9: Triangular solve with unit lower triangular matrix computed in Figure 4.4.
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Algorithm: [b] := UTRSV_UNB(U, b)
Partition U — ( Ury | Urr ) b— (b—T)
Upr | Upr )’ bp
where Ugpr is 0 X 0, bg has 0 rows
while m(Ugg) <m(U) do

Repartition
U Ui b
Ury | Urr 8 0 | ot ¢0p2 br —
0 i — V11 Uyo , b_ — 51
b 0|0 |Ux i by

where vy; is 1 x 1, 1 has 1 row

pr = (51 - Ufgbz)/vn

Continue with

Uogo | uo1 | Un2
Urp | Urg - 0 Ton % |, b R
0 | Usr

endwhile

Figure 4.10: Algorithm for triangular solve with upper triangular matrix.

Now, Ux = b implies

b U T Ux
—— —_—— = % ~
( B ) < V11 U1T2 ) ( X1 > - < V11X1 +U{2$2 )

by 0 | Uy T2 Uzpo

so that

( B =vnxa + uiymy ) or ( X1 = (B — ujpa2) fon )

by = Uy Usaxa = by

This suggests the following steps for overwriting the vector b with the solution vector x:

T
V11 | Uqg 61
U—>< 0 U22>’ and b—>(62)

e Solve Uy = by for x5, overwriting b, with the result.

e Partition

e Update ) = (61 — u,{ng)/Ull(: (61 — U1T2I2)/U11)~

This suggests the algorithms in Figure 4.10.
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Exercise 4.5 Side-by-side, solve the upper triangular linear system

—2X0— X1+ x2= 6
—=3x1—2x2= 9
X2= 3

using the usual approach and apply the algorithm in Figure 4.10 with

-2 -1 1 6
U= 0 -3 -2 and b= 9
0o 0 1 3

In other words, for this problem, give step-by-step details of what both methods do, much
like Figures. 4.5 and 4.6.

Exercise 4.6 Usehttp://www.cs.utexas.edu/users/flame/Spark/ to write a FLAME®@Qlab
code for computing the solution of Ux = b, overwriting b with the solution and assuming
that U is upper triangular.

4.5 Solving the Linear System

What we have seen is that Gaussian Elimination can be used to convert a linear system
into an upper triangular linear system, which can then be solved. We also showed that
computing the LU factorization of a matrix is the same as performing Gaussian Elimination
on the matrix of coefficients. Finally, we showed that forward substitution is equivalent
to solving Lz = b, where L is the unit lower triangular matrix that results from the LU
factorization. We can now show how the solution of the linear system can computed using
the LU factorization.

Let A = LU and assume that Az = b, where A and b are given. Then (LU)x = b or
L(Ux) = b. Let us introduce a dummy vector z = Uz. Then Lz = b and z can be computed
as described in the previous section. Once z has been computed, z can be computed by
solving Ux = z where now U and z are known.
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4.6 When LU Factorization Breaks Down

A question becomes “Does Gaussian elimination always solve a linear system?” Or, equiva-
lently, can an LU factorization always be computed?

What we do know is that if an LU factorization can be computed and the upper triangular
factor U has no zeroes on the diagonal, then Ax = b can be solved for all right-hand side
vectors b. The reason is that if the LU factorization can be computed, then A = LU for
some unit lower triangular matrix L and upper triangular matrix U. Now, if you look at the
algorithm for forward substitition (solving Lz = b), you will see that the only computations
that are encountered are multiplies and adds. Thus, the algorithm will complete. Similarly,
the backward substitution algorithm (for solving Uz = z) can only break down if the division
causes an error. And that can only happen if U has a zero on its diagonal.

Are there examples where LU (Gaussian elimination as we have presented it so far) can

1
break down? The answer is yes. A simple example is the matrix A = ( (1) 0 ) . In the first
step, the algorithm for LU factorization will try to compute the multiplier 1/0, which will
cause an error.

Now, Ax = b is given by the set of linear equations
0 1 Xo \ _ (X1
10 X1 Xo
so that Ax = b is equivalent to
X1\ _ Bo
Xo B

and the solution to Ax = b is given by the vector x = < gl )
0

To motivate the solution, consider applying Gaussian elimination to the following exam-
ple:
20+  4xa+(=2)x2 =—10
4X0+ 8X1+ 6X2 = 20
6xot+(—4)xit+ 2x2= 18

Recall that solving this linear system via Gaussian elimination relies on the fact that its
solution does not change if equations are reordered.
Now,

e By subtracting (4/2) = 2 times the first row from the second row, we get

2x0+  4xi+(—2)x2 =—10
Oxo+  Oxi+ 10x2= 40
6xo+(—4)x1+ 2x2= 18
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e By subtracting (6/2) = 3 times the first row from the third row, we get

2x0+ dx1+(—=2)x2 =—10
Oxo+ Ox1+ 10x2 = 40
Oxo+(—16)x1+ 8xa = 48

e Now, we've got a problem. The algorithm we discussed so far would want to subtract
((—16)/0) times the second row from the third row, which causes a divide-by-zero
error. Instead, we have to use the fact that reordering the equations does not change
the answer, swapping the second row with the third:

2x0+  4Ax1+(—2)x2 =—10
Oxo+(—16)x1+ 8y»= 48
Oxo0+ Oxi1+ 10x2 = 40

at which point we are done transforming our system into an upper triangular system,
and the backward substition can commence to solve the problem.

Another example:

Oxo+  4x1+(—2)x2 =—10
4X0—|— 8X1+ 6X2 = 20
6xo+(—4)x1+ 2x2 = 18

Now,

e We start by trying to subtract (4/0) times the first row from the second row, which
leads to an error. So, instead, we swap the first row with any of the other two rows:

dxo+ 8xi+ Gx2= 20
Oxo+  4x1+(—2)x2 =—10
6xo+(—4)x1+ 2x2 = 18

e By subtracting (6/4) = 3/2 times the first row from the third row, we get

4xo+ Sx1+ 6ya= 20
Oxot+  4xa+(=2)x2 =—10
0X0+(—16>X1+(—7)X2 =—22

e Next, we subtract (—16)/4 = —4 times the second row from the third to obtain

4X0—|—8X1+ 6X2 = 20
Oxo+4x1+ (—=2)x2 =—10
0x0+0x1+(—15)x2 =—62

at which point we are done transforming our system into an upper triangular system,
and the backward substition can commence to solve the problem.

The above discussion suggests that the LU factorization in Fig. 4.11 needs to be modified
to allow for row exchanges. But to do so, we need to create some machinery.
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4.7 Permutations

Example 4.7 Consider

010 2 1 2 32 1
00 1 32 1] =|-10 -3
10 0 ~1 0 -3 21 2
P A

Notice that multiplying A by P from the left permuted the order of the rows in that matrix.

Examining the matrix P in Example 4.7 we see that each row of P appears to equals a
unit basis vector. This leads us to the following definitions:

Definition 4.8 A vector p = (ko, k1, .. ., kn_l)T is said to be a permutation (vector) if
kj €{0,...,n—1},0<j <mn,and k; = k; implies i = j.

We will below write (ko, k1, - . ., kn,l)T to indicate a column vector, for space considerations.
This permutation is just a rearrangement of the vector (0,1,...,n — 1),

Definition 4.9 Let p = (ko,...,k,_1)? be a permutation. Then

T
Gko

T
€k1
P = .
T
eknfl

is said to be a permutation matrix.

In other words, P is the identity matrix with its rows rearranged as indicated by the n-tuple
(ko, k1, .- kn_1). We will frequently indicate this permutation matrix as P(p) to indicate
that the permutation matrix corresponds to the permutation vector p.
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Theorem 4.10 Let p = (ko,...,k,_1)" be a permutation. Consider
efo X0 ag
T
e X1 a
P=P(p) = . , = , , and A= '
Zn—l anl 0“571
Then .
Xko aljﬂo
Xk a
Pz = o , and PA= {ﬂ
an—l az;n—l

In other words, Px and PA rearrange the elements of x and the rows of A in the order in-
dicated by permutation vector p.

Proof: Recall that unit basis vectors have the property that e]TA = d]T.

T T T
Cho Cho A g,
er ep A a,
PA = ) = ) = .
T T T
ek’n_l ekn—lA CLk’n—l

The result for Px can be proved similarly or, alternatively, by viewing x as a matrix with
only one column.

Exercise 4.11 Let p = (2,0,1)”. Compute

—2 -2 1 2
P(p) 3 and P(p) 3 2 1
—1 -1 0 =3

Hint: it is not necessary to write out P(p): the vector p indicates the order in which the
elements and rows need to appear.

Corollary 4.12 Let p = (ko, k..., ky,_1)" be a permutation and P = P(p). Consider
A= ( Qo ‘ aq ‘ ‘ Ap_1 ) Then APT = ( Ak, ‘ Ak, ‘ ‘ ak, )
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Proof: Recall that unit basis vectors have the property that Ae;, = ay.

er g
ro_ |
AP = A : =A( ex | en | | ey )
er
= (Aeg [ Ay, [+ [ Aen,y ) = Cano [ an [ [, )

Corollary 4.13 If P is a permutation matrix, then so is PT.

This follows from the observation that if P can be viewed either as a rearrangement of
the rows or as a (usually different) rearrangement of the columns.

Corollary 4.14 Let P be a permutation matrix. Then PPT = PTP =1

Proof: Let p = (ko, k1, ..., k;n_l)T be the permutation that defines P. Then

T
T T T
6£}0 eéo eg0
ppT €hy Chy B €hy
= . . - . (eko‘ek‘l‘...‘ekn—l)
T T T
ek‘n_l ek?n—l 6"h‘n—l
T T T
egoeko eéoekl eéoek%1 1 0 - 0
_ €1, Eko €h,Chi T ChyChay B 01 - 0 g
T T T
ekn716k0 ekn71€k1 T eknflekn—l 0 0 tee 1

Now, we already argued that P7 is also a permutation matrix. Thus, [ = PT(PT)T = PTP,
which proves the second part of the corollary.
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Definition 4.15 Let us call the special permutation matrix of the form

er 0]0 0[1]0 0]
el 01 0100 0
Pr) = el | _ 0 1[0]0 0
el 1[0 --- 0]0 0|
T 010 0]0]1 0
el 0]0 0/0]0 1

a pivot matrix.

Theorem 4.16 When P(r) multiplies a matrix from the left, it swaps rows 0 and 7.
When P(7) multiplies a matrix from the right, it swaps columns 0 and 7.

4.8 Back to “When LU Factorization Breaks Down”

Let us reiterate the algorithmic steps that were exposed for the LU factorization in Sec-
tion 4.2:

e Partition T
ap | a
A= ( a2 A1222 ) '
e Update ag; = ag/oq1(= la1).
o Update Ay = Ay — agiafy(= Agp — layufy).
e Overwrite Ay with Loy and Uy by continuing recursively with A = Ags.

Instead of overwriting A with the factors L and U, we can compute L separately and
overwrite A with U, and letting the elements below its diagonal become zeroes. This allows
us to get back to formulating the algorithm using Gauss transforms

T

Q11 | Ay
A— —‘7 .
(am A22>

e Partition

e Compute [y = a21/0é11-
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[L, A] == LU_UNB_VAR5_ALT(A)
Partition L :=1

A (ATL‘ATR> (LTL 0 )
— , L —
ABL ABR LBL LBR

where Arpis 0x0
while m(Ar.) <m(A) do

Repartition
ATL ATR Ago ap1 qug LTL 0 LYQO 0 0
A A T Mo A | G [\ T T — | Ll 1] O
BL bR Ago | a1 | Aso BL bR Lo | lo1 | Lo

where a7 is 1 x 1

loy = CL21/0411

11 CLTQ ‘: 1 ‘ 0 11 ‘ CL?Q _ 11 ‘ CL?Q

ag | Agz ) —lo ‘ I az1 ‘ Ags 0 ‘ Agy — l21a{2
Continue with 1 p ’ 0 0

a
Arr | Arr ML A Lri | O quo T o
Apr | Agr TSl f Lpr | Ler - 0
A20 as | Az Loy | lo1 | Lo

endwhile

Figure 4.11: Algorithm for computing the LU factorization, exposing the update of the
matrix as multiplication by a Gauss transform.

T T T
* Lpaate ( ag | A ) ( —lyn ‘ I ) ( 21 ‘ A 0 ‘ A —l21a1T2

e Overwrite Asy with Loy and Uy by continuing recursively with A = Ags.

This leads to the equivalent LU factorization algorithm in Fig. 4.11. In that algorithm the
elements below the diagonal of A are overwritten with zeroes, so that it eventually equals
the upper triangular matrix U. The unit lower triangular matrix L is now returned as a

: . 1 10 Y.
separate matrix. The matrix (ﬁ) is known as a Gauss transform.
—l21

Example 4.17 In Fig. 4.12 we illustrate the above alternative description of LU factoriza-
tion with the same matrix that we used in Fig. 4.4.

Let us explain this in one more, slightly different, way:
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Figure 4.12: LU factorization based on Gauss transforms of a 3 x 3 matrix. Here, “Step”
refers to the corresponding step for Gaussian Elimination in Fig. 4.2.
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e Partition

Ago | aor | Aoz Log]0|0
A — 0 |amn | al, and L— [ I, ]1]0
0 | aon | Aoz Log 0|1

where the thick line indicates, as usual, how far we have gotten into the computation.
In other words, the elements below the diagonal of A in the columns that contain Agg
have already been replaced by zeroes and the corresponding columns of L have already
been computed.

e Compute ly; = as/aq;1.

Aoo | ao1 | Aoz I 0 0 Ao | ao1 | Aoz
e Update 0 |amn | al, =10 1 |0 0 |an|dl
0 0 AOQ 0 — l21 I 0 ap1 AOQ

e Continue by moving the thick line forward one row and column.

This leads to yet another equivalent LU factorization algorithm in Fig. 4.13. Notice that upon
completion, A is an upper triangular matrix, U. The point of this alternative explanation is
to show that if L represents the ith Gauss transform, computed during the ith iteration
of the algorithms, then the final matrix stored in A, the upper triangular matrix U, satisfies
U= L0203 .. Z(O)fl, where A is the original matrix stored in A.

Example 4.18 Let us illustrate these last observations with the same example as in Fig. 4.4:

-2 -1 1 100
e Start with A = A® = 2 -2 -3 |landL=]|01 0
—4 4 7 00 1

e In the first step,

— Partition A and L to expose the first row and column:

[2]-1 1 1[0 0
21 -2 =3 and 0|1 0 |;
—4 4 7 00 1
— Compute
2 —1
l21—(_4)/(_2)_( 9 )
— Update A with
110 0 -2 -1 1 2| -1 1
AW = 1[1 0 22 -3 | = 0] -3 —2
20 1 —4 4 7 0 6 5)
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[L, A] :== LU_UNB_VAR5_ALT(A)
Partition L :=1
A_>(ATL ATR>7L_>(LTL 0 )
ABL ABR LBL LBR
where A7 is0x0
while m(A7rp) < m(A) do
Repartition
ATL ATR Ago ap1 Aj()? LTL 0 LYQO 0
T T — ayy | 11 | agy N T TTon — lip | 1 0
BL bR Ago | a1 | Aso Lo | l21 | Lo
where a7 is 1 x 1
loy = CL21/0411
Ago | aor | Aoz It 0 |0 Ago | aor | Aoz
alg lan |aly = 0] 1 |0 aly | a1 | aly
Ago 0 | Ape 0 —lor | 1 Ago | ao1 | Aoz
I 0 Ago | aor | Aoz Ago | am Aoz
= 0 1 0 11 | Q19 = 0 11 a1T2
0| —ln 0 aor | Aoz 0 0 | Ag — 1216[{2
Continue with A r
ATL ATR dot 72 Lrp | O ~ 0
A 1 a10 a1 | G 7T T — lip | 1 0
BL bR as | Az Bl BR Loy | o1 | Lo
endwhile

Figure 4.13: Algorithm for computing the LU factorization.
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We emphasize that now A1) = L A©O),
e In the second step,

— Partition A (which now contains A®) and L to expose the second row and column:

21 -1 1 11010
0] -31|-2 and —111/0 |;
0 6 5 2101

— Compute

— Update A with

1]o]o 9| -1 1
o 011 0] -3 —2 2] -1 1
A% = \ToT2711 ol 6] 5/ = 0] —3]—2
-~ ~ . ol ol 1
LM A
We emphasize that now
2 -1 1 100 92 -1 1
0 -3 -2 010 0 -3 —2
A = o 0o 1) =\o021 0 6 5
A®) i A
100 100 92 -1 1
010 110 2 —2 -3
= 02 1 2.0 1 4 4 7
268 i A0)

The point of this last example is to show that LU factorization can be viewed as the com-
putation of a sequence of Gauss transforms so that, upon completion U = LD L(=2) [(n=3) ... [(0) 4,
(Actually, LV is just the identity.)

Now, let us consider the following property of a typical Gauss transform:

I 0 0 I1 010 11010

0 1 0 01110 0Ol1]0

0 =y | I 0]l |1 = 01017
100 L0 7
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The inverse of a Gauss transfqrm can be founvd by changing —ls; to lo!!! )
This means that if U = LO2L0=3) ... LA then if L is the inverse of L®, then
LO  L0=3) =217 = A In the case of our example,

1 00 1 00 -2 -1 1 -2 -1 1
-1 10 0 10 0 —3 -2 2 -2 -3
2 01 0 -2 1 0o 0 1 = -4 4 7
Lo L U A
Finally, note that

1 00 1 00 1 00

-1 10 0 10 -1 10

2 01 0 -2 1 = 2 -2 1

7,0 7, f(rl)

In other words, the LU factor L can be constructed from the Gauss transforms by setting
the jth column of L to the jth column of the jth Gauss transform, and then “flipping” the
sign of the elements below the diagonal. One can more formally prove this by noting that

Lo | 0] 0 11010 Lo | 0|0
L 11]0 ofr]o|=|"%]1]o0
L20 011 0 l21 I L20 lgl I

as part of an inductive argument.

Now, we are ready to add pivoting (swapping of rows, in other words: swapping of
equations) into the mix.

Example 4.19 Consider again the system of linear equations

2xo+ A+ (—2)x2 =—10
dxo+ 8xat+ bx2= 20
6xo+(—4)x1+ 2x2 = 18

and let us focus on the matrix of coefficients

2 4 =2
A= 4 8 6
6 —4 2

Let us start the algorithm in Figure 4.11. In the first step, we apply a pivot to ensure that
the diagonal element in the first column is not zero. In this example, no pivoting is required,
so the first pivot matrix, P = I.

110 0 21 4 =2 21 4 -2

011 0 41 8 6 | = 41 8 6

010 1 6|—-4 2 6|—4 2
%,—/ N J/
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[L, A] :== LU_UNB_VAR5_PIV(A)

Partition L :=1

(e - (deh) - (2)
Apr | Ar )’ Lpr | Ler )’ PB

where A7y is 0 x0
while m(Ar.) <m(A) do

Repartition
(mf ey (0 ) () (5
Apr | Asr "\ LgL | Ler "\ pB pii

where ;181 x 1

m; = Prvor a
21

T
Q11 | Q9 ) .

a21 A22

|
=
3
=
N~—
/N
812
==
| 2
NS
~~

loy = 021/0411
< 11 CL{Z ) — ( 1 ‘ 0 ) ( 11 ‘ CLl‘lrz ) _ ( 11 ‘ CL{Q >
ag | Aaz ) —l2 ‘ I az1 ‘ Ago 0 ‘ Agy — l21(l1T2

Continue with
< ATL ATR ) ( LTL 0 ) < P ) 7]?0
— e , — e R — <— pl
Apr | Asr Lpr | Lr PB —

endwhile

Figure 4.14: Algorithm for computing the LU factorization, exposing the update of the
matrix as multiplication by a Gauss transform and adding pivoting.
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Next, a Gauss transform is computed and applied:

170 0 2] 4 —2 2] 4 —2
—2[1 0 4178 6| = [[o] 0 10
—-3(0 1 6|—4 2 0| -16 8
20 A00) A

In the second step, we apply a pivot to ensure that the diagonal element in the second
column is not zero. In this example, the second and third row must be swapped by pivot
matrix PW):

1{o]o 2| 4|-2 2 4] -2
0101 o o0l 10| = [0[-16] 2
0[1]0 016 8 ol 0] 10
1] 0 A A0
(T PO )

Next, a Gauss transform is computed and applied:

1lolo 2] 4|-2 2 4] -2
010 0l-16] 8 | = [ 0[-16] 8
0lo]1 ol 0] 10 ol 0] 10
i RO A®

Notice that at each step, some permutation matrix is used to swap two rows, after which

a Gauss transform is computed and then applied to the resulting (permuted) matrix. One
can describe this as U = L2 p(=2) [(=3) p(n=3) ... L) pO) A where P® represents the
permutation applied during iteration 2. Now, once an LU factorization with pivoting is com-
puted, one can solve Az = b by noting that Uz = L2 p(»=2) [(n=3) p(n=3) ... [(0) p(0) Ay —
L(n=2) p(n=2) [ (n=3) p(n=3) ... [(0) PO In other words, the pivot matrices and Gauss trans-
forms, in the proper order, must be applied to the right-hand side,

2= [(-2) pn-2) [ (n-8) p(n=3) . [(0) p(O),

after which = can be obtained by solving the upper triangular system Ux = z.

Remark 4.20 If the LU factorization with pivoting completes without encountering a
zero pivot, then given any right-hand size b this procedure produces a unique solution .
In other words, the procedure computes the net effect of applying A~! to the right-hand
side vector b, and therefore A has an inverse. If a zero pivot is encountered, then there
exists a vector  # 0 such that Ax = 0, and hence the inverse does not exist.
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4.9 The Inverse of a Matrix

4.9.1 First, some properties

Definition 4.21 Given A € R™ "™, a matriz B that has the property that BA = I, the
identity, is called the inverse of matriz A and is denoted by A=1.

Remark 4.22 We will later see that not every square matrix has an inverse! The inverse
of a nonsquare matrix is not defined. Indeed, we will periodically relate other properties
of a matrix to the matrix having an inverse as these notes unfold.

Notice that A™! is the matrix that “undoes” the transformation A: A~'(Az) = z. It
acts as the inverse function of the function F(x) = Ax.

Example 4.23 Let’s start by looking at some matrices for which it is easy to determine the
muverse:

e The identity matrix: /' =1, since I - [ =1. ;

e Diagonal matrices:

§ 0 - 0 % 0 0

0 0 0 + 0
if D = o then D! = !

0 0 - 8,1 o 0 ... 571’1_1

In particular, if D = 61 (all elements on the diagonal equal &) then D' = %I.

e Zero matrix: Let O denote the n x n matrixz of all zeroes. This matrix does not
have an inverse. Why? Pick any vector x # 0 (not equal to the zero vector). Then
O~ (Oz) =0 and, if O~" existed, (O7'O)zx = Iz = z, which is a contradiction.

Theorem 4.24 Let Az = b and assume that A has an inverse, A='. Then z = A~!b.

Proof: If Az = b then A~'Ax = A~'b and hence Iz = x = A~ 'b.

Corollary 4.25 Assume that A has an inverse, A~!. Then Ax = 0 implies that z = 0.

Proof: If A has an inverse and Az = 0, then z = [x = (A" 'A)z = A~ (Az) = A~10 = 0.
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Theorem 4.26 If A has an inverse A, then AA~! = I.

Theorem 4.27 (Uniqueness of the inverse) If A has an inverse, then that inverse is
unique.

Proof: Assume that AB = BA =1 and AC = CA = I. Then by associativity of matrix
multiplication C' = CI = C(AB) = (CA)B = B.

Let us assume in this section that A has an inverse and let us assume that we would
like to compute C' = A~!. Matrix C must satisfy AC = I. Partition matrices C' and I by
columns:

At b ) = (Aa Ae |- [ Acoy ) = (coler] ),

N

c 1
where e; equals the jth column of 1. (Notice that we have encountered e; before in Section ?77.
Thus, the jth column of C, ¢;, must solve Ac; = e;.

Now, let us recall how if Gaussian elimination works (and in the next section we will
see it doesn’t always!) then you can solve Az = b by applying Gaussian elimination to
the augmented system ( A ‘ b ), leaving the result as ( U ‘ z ) (where we later saw that z
solves Lz = b), after which backward substitution could be used to solve the upper triangular
system Uz = z.

So, this means that we should do this for each of the equations Ac; = e;: Append
( A ‘ e; ), leaving the result as ( U ‘ Z; ) and then perform back substitution to solve Uc; =
Zj-

4.9.2 That’s about all we will say about determinants

Example 4.28 Consider the 2 X 2 matriz ( 2 -1

11 ) . How would we compute its inverse?

One way is to start with A=! = ( go,o go’l ) and note that
1,0 P11

(2 —1>(50,0 50,1)2(1 0)
I 1 Bro Pia 0 1)’

which yields two linear systems:

()G =(o)ma (33 (50)= (1)
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)

_ 1
Exercise 4.29 Check that ( ? 11 ) ( 3

1
Solving these yields A~ = ( 3

W=
LN |

[SUATNOMI g

)=(a )

One can similarly compute the inverse of any 2 x 2 matrix: Consider

Qo0 Q1 Goo Por \ _ (1 0
Q10 G1;1 ﬁl,o 51,1 01 ’

which yields two linear systems:

Qo0 Qo1 Boo \ _ (1 and [ Qoo Qo Gox y _ (0
Q1o Q11 51,0 0 Q1o Q171 ﬁ1,1 1)

Solving these yields

-1
Qoo Qo1 . 1 Q11 —0p1
Q10 Q11 Qo011 — Q1o \ —A10 @0

Here the expression agooq1 — o110 is known as the determinant. The inverse of the 2 x 2
matrix exists if and only if this expression is not equal to zero.

Similarly, a determinant can be defined for any n x n matrix A and there is even a
method for solving linear equations, known as Kramer’s rule and taught in high school
algebra classes, that requires computation the determinants of various matrices. But this
method is completely impractical and therefore does not deserve any of our time.

_1
3

4.9.3 Gauss-Jordan method

There turns out to be a convenient way of computing all columns of the inverse matrix
simultaneously. This method is known as the Gauss-Jordan method. We will illustrate this
for a specific matrix and relate it back to the above discussion.

2 4 =2
Consider the matrix A= | 4 —2 6 |. Computing the columns of the inverse matrix
6 —4 2
could start by applying Gaussian elimination to the augmented systems
2 4 =21 2 4 =210 2 4 =210
4 =2 6|0 |, 4 -2 6|1 )J,and | 4 =2 6|0
6 —4 2|0 6 —4 210 6 —4 2|1

Why not apply them all at once by creating an augmented system with all three right-hand
side vectors:

2 4 =211 00
4 =2 60 1 0
6 —4 2|0 0 1

Then, proceeding with Gaussian elimination:
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e By subtracting (4/2) = 2 times the first row from the second row, we get

2 4 =21 1 0 0
0 —-10 10| -2 1
6 —4 2] 00

e By subtracting (6/2) = 3 times the first row from the third row, we get

2 4 =21 1 00
0 =10 10|-2 1 0
0 =16 8|-3 0 1

e By subtracting ((—16)/(—10)) = 1.6 times the second row from the third row, we get

2 4 =2 1 0 0
0 —-10 10| -2 10
0 0 —-8102 —-16 1

Exercise 4.30 Apply the LU factorization in Figure 4.3 to the matrix

2 4 =2
4 -2 6
6 —4 2

Compare and contrast it to the Gauss-Jordan process that we applied to the appended
system

2 4 =2|/1 00
4 =2 60 1 0
6 —4 2|0 0 1

Next, one needs to apply backward substitution to each of the columns. It turns out that
the following procedure has the same net effect:

e Look at the “10” and the “-8” in last column on the left of the |. Subtract (10)/(—38)
times the last row from the second row, producing

2 4 -2 1 0 0
0 =10 0]—-17 =1 1.25
0 0 -8 02 —1.6 1

e Now take the “-2”7 and the “-8” in last column on the left of the | and subtract
(—2)/(—8) times the last row from the first row, producing

2 4 0] 095 04 —-0.25
0 -10 O0|-17 -1 1.25
0 0 -8 02 —-1.6 1
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e Finally take the “4” and the “-10” in second column on the left of the | and subtract
(4)/(—10) times the second row from the first row, producing

2 0 0] 025 0 0.25
0 -10 O0|-175 -1 1.25
0 0 -8 0.2 —1.6 1

e Finally, divide the first, second, and third row by the diagonal elements on the left,

respectively, yielding

1 0 0] 0125 0 0.125
01 0] 0175 0.1 -0.125
0 0 1]-0.025 0.2 —-0.125

Lo and behold, the matrix on the right is the inverse of the original matrix:

2 4 =2 0.125 0 0.125 1 00
4 -2 6 0.175 0.1 —-0.125 | = 0 1 O
6 —4 2 —0.025 0.2 —0.125 0 01

Notice that this procedure works only if no divide by zero is encountered.

(Actually, more accurately, no zero “pivot” (diagonal element of the upper triangular
matrix, U, that results from Gaussian elimination) can be encountered. The elements by
which one divides in Gauss-Jordan become the diagonal elements of U, but notice that
one never divides by the last diagonal element. But if that element equals zero, then the
backward substitution breaks down.)

Exercise 4.31 Apply the Gauss-Jordan method to the matrix in Example 4.28 to compute
its inverse.

Remark 4.32 Just like Gaussian elimination and LU factorization could be fixed if a zero
pivot were encountered by swapping rows (pivoting), Gauss-Jordan can be fixed similarly.
It is only if in the end swapping of rows does not yield a nonzero pivot that the process
fully breaks down. More on this, later.

Although we don’t state the above remark as a formal theorem, let us sketch a proof
anyway:

Proof: We previous showed that LU factorization with pivoting could be viewed as com-
puting a sequence of Gauss transforms and pivoting matrices that together transform n x n
matrix A to an upper triangular matrix:

L) pln=2) [ (n=8) pn=3) . [ (0) p0) 4 — []
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where L) and P represents the permutation applied during iteration .
Now, if U has no zeroes on the diagonal (no zero pivots were encountered during LU with
pivoting) then it has an inverse. So,

UL p=2) [ (n=8) pn=3) . [OpO) 4 _ |
AL

which means that A has an inverse:

AL = -1 (0-2) pn=2) [ (n=3) pn=3) . . [.0) pl0)
What the first stage of Gauss-Jordon process does is to compute

U = (L0 (P02 (L) (P0=3) . (L (PO A))))--))),
applying the computed transformations also to the identity matrix:

B = (L0 (P=2) (L0=3) (P0=3) . ((LO (PO]))))-.)))

The second stage of Gauss-Jordan (where the elements of A above the diagonal are elimi-
nated) is equivalent to applying U~! from the left to both U and B.

By viewing the problems as the appended (augmented) system ( A ‘ 1 ) is just a conve-
nient way for writing all the intermediate results, applying each transformation to both A
and [.

4.9.4 Inverting a matrix using the LU factorization

An alternative to the Gauss-Jordan method illustrated above is to notice that one can
compute the LU factorization of matrix A, A = LU, after which each Ab; = e; can be solved
by instead solving Lz; = e; followed by the computation of the solution to Ub; = z;. This
is an example of how an LU factorization can be used to solve multiple linear systems with
different right-hand sides.

One could also solve AB = I for the matrix B by solving LZ = I for matrix Z followed
by a computation of the solution to UB = Z. This utilizes what are known as “triangular
solves with multiple right-hand sides”, which go beyond the scope of this document.

Notice that, like for the Gauss-Jordan procedure, this approach works only if no zero
pivot is encountered.

Exercise 4.33 The answer to Exercise 4.31 is

2 4 =2 1 00 2 4 =2
4 =2 6 |=12 10 0 —10 10
6 —4 2 3 16 1 0 0 -8
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Solve the three lower triangular linear systems

1 0 0 C(],O 1 1 00 C071 0
2 10 Go | =101, 2 10 Cia = 11,
3 1.6 1 (20 0 3 16 1 Cou 0
1 00 Cos 0
and 2 1 0 CLQ = 0
3 1.6 1 (oo 1
Check (using octave if you are tired of doing arithmetic) that LZ = I:
1 00 Co0 Go1 Goz 100
2 10 Go CGi1 Gz |=1010
3 1.6 1 Co0 o1 (o2 0 0 1
Next, solve
2 4 -1 Bo,o Co.0 2 4 -1 Bo,1 o1
0 —10 10 Pio | = Go |, 0 —10 10 i | =1 G |,
0 0 8 B2,0 C2,0 0 0 8 B2.1 G20
2 4 -1 Bo,2 Co,2
and | 0 —10 10 Big | = Gz
0 0 8 Bo,2 G2,2

Check (using octave if you are tired of doing arithmetic) that UB = Z and AB = 1.

Compare and contrast this process to the Gauss-Jordan process that we applied to the
appended system

2 4 =211 00
4 =2 60 1 0
6 —4 2|0 0 1

You probably conclude that the Gauss-Jordan process is a more convenient way for comput-
ing the inverse of a matrix by hand because it organizes the process more conveniently.

Theorem 4.34 Let L € R" " be a lower triangular matrix with (all) nonzero diagonal
elements. Then its inverse L~! exists and is lower triangular.

Proof: Proof by Induction. Let L be a lower triangular matrix with (all) nonzero diagonal
elements.

e Base case: Let L = ( A1 ) Then, since A\;; # 0, we let L™ = ( /A1 ), which is
lower triangular and well-defined.
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e Inductive step: Inductive hypothesis: Assume that for a given & > 0 the inverse of
all k x k lower triangular matrices with nonzero diagonal elements exist and are lower
triangular. We will show that the inverse of a (k + 1) x (k + 1) lower trianglar matix
with (all) nonzero diagonal elements exists and is lower triangular.

Let (k+1) x (k+1) matrix L be lower triangular with (all) nonzero diagonal elements.
We will construct a matrix B that is its inverse and is lower triangular. Partition

A1l O B b1T2
L—><121 L22) and B—><521 By )7

where Log is lower triangular (why?) and has (all) nonzero diagonal elements (why?),
and Ajp # 0 (why?). We will try to construct B such that

(o) () - i

lo1 ‘ Loy b1 ‘ Baso 0 ‘ r)

(Note: we don’t know yet that such a matrix exist.) Equivalently, employing blocked
matrix-matrix multiplication, we want to find £y, b1y, by, and Bays such that

( Al ‘ 0 ) ( o8 ‘ b1, ) _ A1 ‘ Aibly _ ( 1 ‘ 0 )
lo1 ‘ Iy ba1 ‘ Bas Biilar + Lazboy ‘ In1bly + Ly Bay 0 ‘ r)

Thus, the desired submatrices must satisfy

Afu =1 ‘ Aibly =0
Prilar + Lagby =0 ‘ lyibiy + Loy By =1 °

Now, let us choose (311, bﬂ, bo1, and Bss so that

— B =1/A1 (why?);

— A, =0 (why?);

— L9y Boy = I. By the inductive hypothesis such a By, exists and is lower triangular;
and finally

— g1 811 + Lasboy = 0, or, equivalently, byy = —Lyslo1 /A1 (which is well-defined
because By = Ly, exists).

()\11 0 )( 1/ du | 0 )Z(lo)

lo1 | Lo —Lyyloy /M1 | Ly 01 )"

e By the Principle of Mathematical Induction the result holds for all lower trian-
gular matrices with nonzero diagonal elements.

Indeed,
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Theorem 4.35 Let L € R™" be a unit lower triangular matrix with (all) nonzero diag-
onal elements. Then its inverse L~! exists and is unit lower triangular.

Theorem 4.36 Let U € R™ ™ be an upper triangular matrix with (all) nonzero diagonal
elements. Then its inverse U ! exists and is upper triangular.

Theorem 4.37 Let U € R"™" be a unit upper triangular matrix with (all) nonzero
diagonal elements. Then its inverse U~! exists and is unit upper triangular.

Exercise 4.38 Prove Theorems 4.35-4.37.

Exercise 4.39 Use the insights in the proofs of Theorems 4.34 4.37 to formulate algorithms
for

1. a lower triangular matrix.
2. a unit lower triangular matrix.
3. an upper triangular matrix.
4. a unit upper triangular matrix.
Hints for part 1:
e Overwrite the matrix L with its inverse.

e In the proof for Theorem 4.34, by; = L;;lzl /A11. When computing this, first update
bo1 := la1/A11. Next, do not invert Los. Instead, recognize that the operation lo; :=
L2_21l21 can be instead viewed as solving Losx = lo1, overwriting the vector ly; with the
result x. Then use the algorithm in Figure 4.8 (modified as in Exercise 4.4).

Corollary 4.40 Let L € R™" be a lower triangular matrix with (all) nonzero diag-

Lre| O ), where Ly is k x k. Then L' =

onal elements. Partition L —
Lpr | Lpr

( Lyp |0 )
—LygrLprLlyy | Lgp )
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Proof: Notice that both Ly, and Lpg are themselves lower triangular matrices with (all)
nonzero diagonal elements. Here, their inverses exists. To complete the proof, multiply out
LL~! for the partitioned matrices.

Exercise 4.41 Formulate and prove a similar result for the inverse of a partitioned upper
triangular matrix.

4.9.5 Inverting the LU factorization

Yet another way to compute A~! is to compute its LU factorization, A = LU and to then
note that A=' = (LU)~! = U7'L~!. But that requires us to discuss algorithms for inverting
a triangular matrix, which is also beyond the scope of this document. This is actually (closer
to) how matrices are inverted in practice.

Again, this approach works only if no zero pivot is encountered.

4.9.6 In practice, do not use inverted matrices!

Inverses of matrices are a wonderful theoretical tool. They are not a practical tool.

We noted that if one wishes to solve Az = b, and A has an inverse, then x = A~1b. Does
this mean we should compute the inverse of a matrix in order to compute the solution of
Ax = b? The answer is a resounding “no”.

Here is the reason: In the previous sections, we have noticed that as part of the compu-
tation of A7, one computes the LU factorization of matrix A. This costs 2/3n? flops for an
n X n matrix. There are many additional computations that must be performed. Indeed,
although we have not shown this, it takes about 2n® flops to invert a matrix. After this, in
order to compute b = A~'x, one needs to perform a matrix-vector multiplication, at a cost of
about 2n? flops. Now, solving Lz = b requires about n? flops, as does solving Uz = b. Thus,
simply using the LU factors of matrix A to solve the linear system costs about as much as
does computing b = A~'z but avoids the additional 4/3n3 flops required to compute A~*
after the LU factorization has been computed.

Remark 4.42 If anyone ever indicates they invert a matrix in order to solve a linear
system of equations, they either are (1) very naive and need to be corrected; or (2) they
really mean that they are just solving the linear system and don’t really mean that they
invert the matrix.
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4.9.7 More about inverses

Theorem 4.43 Let A, B,C' € R™" assume that A~! and B~! exist. Then (AB)~! exists
and equals B~tAL.

Proof: Let C = AB. It suffices to find a matrix D such that CD = I since then C~! = D.

Now,
C(B'AY)Y=MAB)(B'AY=A (BB A'=A4"=1]
I

and thus D = B~!A~! has the desired property.

Theorem 4.44 Let A € R™" and assume that A~! exists. Then (AT)™! exists and
equals (A~1)T.

Proof: We need to show that AT(A™1T = I or, equivalently, that (AT(A™)T)T =T =T
But
(AT(AT)TT = (AT (ATYT = A A= T,

which proves the desired result.

Theorem 4.45 Let A € R"*", x € R", and assume that A has an inverse. Then Ax =0
if and only if x = 0.

Proof:

e Assume that A~! exists. If Az = 0 then

r=Ir=A"1Axr=A"10=0.

e Let x = 0. Then clearly Az = 0.

Theorem 4.46 Let A € R™™". Then A has an inverse if and only if Gaussian elimination
with row pivoting does not encounter a zero pivot.
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Proof:

e Assume Gaussian elimination with row pivoting does not encounter a zero pivot. We
will show that A then has an inverse.

Let Ly, 1Py 1 LoPyA=U , where P, and Ly are the permutation matrix that swaps
the rows and the Gauss transform computed and applied during the kth iteration of
Gaussian elimination, and U is the resulting upper triangular matrix. The fact that
Gaussian elimination does not encounter a zero pivot means that all these permutation
matrices and Gauss transforms exist and it means that U has only nonzeroes on the
diagonal. We have already seen that the inverse of a permutation matrix is its transpose
and that the inverse of each L exists (let us call it L;). We also have seen that a
triangular matrix with only nonzeroes on the diagonal has an inverse. Thus,

UL, 1Py1---LyPy A=UU =1,
A1

and hence A has an inverse.

e Let A have an inverse, A~!. We will next show that then Gaussian elimination with row
pivoting will execute to completion without encountering a zero. We will prove this by
contradiction: Assume that Gaussian elimination with column pivoting encounters a
zero pivot. Then we will construct a nonzero vector x so that Ax = 0, which contradicts
the fact that A has an inverse by Theorem 4.45.

Let us assume that k steps of Gaussian elimination have proceeded without enountering
a zero pivot, and now there is a zero pivot. Using the observation that this process
can be explained with pivot matrices and Gauss transforms, this means that

Uogo | uor | Up2

Ly Py Ly A=U=1| 00 [a, |,
0| o0 |A22

where Uy is a k X k upper triangular matrices with only nonzeroes on the diagonal
(meaning that Uy, exists). Now, let

—U&)IUOI
T = 1 # 0 sothat Uz = 0.
0

Then
Ar =P Ly--- Pl Ly \Uxr=Pj Ly--- Pl Lp_10=0.

As a result, A7 cannot exist, by Theorem 4.45.
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Exercise 4.47 Show that

Uoo | uo1 | Un2 —Upgo o 0
010 af |, 1 =( 0 |=0
0 0 | A22 0 0




