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Model of Parallel Computation 

•  p   nodes 

•  physical two dimensional mesh 
–  r   rows,  c  columns 
–  nodes have physical indices  (i,j)  

•  often logically viewed as a linear array 
–  indexed 0, ... , p-1 
–  nodes are numbered in row-major order 
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0,1 0,0 0,2 0,3 

1,1 1,0 1,2 1,3 

2,1 2,0 2,2 2,3 

•  physical two dimensional mesh 
–  r   rows,  c  columns 
–  nodes have physical indices  (i,j)  
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1 0 2 3 

5 4 6 7 

9 8 10 11 

•  often logically viewed as a linear array 
–  indexed 0, ... , p-1 
–  nodes are numbered in row-major order 
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1 0 2 3 4 5 6 8 7 

•  often logically viewed as a linear array 
–  indexed 0, ... , p-1 
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The Cost of Communication 

•  send a message of length n  over d  links 
•  packetize the message 
•  Example:  d=6 
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The Cost of Communication 

•  send a message of length n  over d  links 
•  k  packets 
• Cost: 
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The Cost of Communication 

•  send a message of length n  over d  links 
•  k  packets 
• Cost: 
 
 
 
 
•  Example revisited ... 

α + d αnet +
n
k
β

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + (k − 1) αnet +

n
k
β

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

=

α + nβ + (d + k − 1)αnet +
d − 1
k

β

≈

α + nβ

nβ
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Model of Parallel Computation 

•  a node can send directly to any other node 
•  a node can simultaneously receive and send 
•  cost of communication 

–  sending a message of length n  between any two nodes 
 
 

–  if a message encounters a link that simultaneously 
accomodates  M   messages, the cost becomes 
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Model of Parallel Computation 

•  a node can send directly to any other node 
•  a node can simultaneously receive and send 
•  cost of communication 

–  sending a message of length n  between any two nodes 
 
 

–  if a message encounters a link that simultaneously 
accomodates  M   messages, the cost becomes 

 
 

α + nβ

α + Mnβ
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Interfering messages  

•  Example: two messages of length n   which 
share at least one link 
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• A building block approach to library 

implementation 
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Collective Communications 

• Broadcast 
• Reduce(-to-one) 
•  Scatter  
• Gather 
• Allgather 
• Reduce-scatter 
• Allreduce 
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Broadcast 

Before After 
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+ + + + + + + 

Reduce(-to-one) 

Before After 

+ 
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Broadcast/Reduce(-to-one) 

Broadcast 

Reduce(-to-one) 
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Scatter 

Before After 
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Gather 

Before After 
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Scatter/Gather 

Scatter 

Gather 
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Allgather 

Before After 
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+ + + + + + + 

Reduce-scatter 

Before After 

+ 
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Allgather/Reduce-scatter 

Allgather 

Reduce-scatter 



102 

+ + + + + + + 

Allreduce 

Before After 

+ 
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Lower bounds (startup) 

• Broadcast 

• Reduce(-to-one) 

•  Scatter/Gather 

• Allgather 

• Reduce-scatter 

• Allreduce 

log(p)⎡ ⎤α

log(p)⎡ ⎤α

log(p)⎡ ⎤α

log(p)⎡ ⎤α

log(p)⎡ ⎤α

log(p)⎡ ⎤α
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Lower bounds (bandwidth) 

• Broadcast 

• Reduce(-to-one) 

•  Scatter/Gather 

• Allgather 

• Reduce-scatter 

• Allreduce 

nβ

nβ + p − 1
p
nγ

p − 1
p
nβ

p − 1
p
nβ

p − 1
p
nβ + p − 1

p
nγ

2 p − 1
p
nβ + p − 1

p
nγ
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A building block approach to 
library implementation 

•  Short vector case 

•  Long vector case 

• Hybrid algorithms 
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Short vector case 

•  Primary concern:  
–  algorithms must have low latency cost 

•  Secondary concerns: 
–  algorithms must work for arbitrary number of nodes 

»  in particular, not just for power-of-two numbers of 
nodes 

–  algorithms should avoid network conflicts 
»  not absolutely necessary, but nice if possible 
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Minimum spanning tree based 
algorithms 

• We will show how the following building 
blocks: 
–  broadcast/combine-to-one 
–  scatter/gather 

  can be implemented using minimum spanning 
trees embedded in the logical linear array while 
attaining 
–  minimal latency 
–  implementation for arbitrary numbers of nodes 
–  no network conflicts 
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General principles 

• message starts on one processor 
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General principles 

•  divide logical linear array in half 
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General principles 

•  send message to the half of the network that 
does not contain the current node (root) that 
holds the message 
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General principles 

•  send message to the half of the network that 
does not contain the current node (root) that 
holds the message 
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General principles 

•  continue recursively in each of the two halves 
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Broadcast 

Before After 
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Let us view this more closely 

• Red arrows indicate startup of communication 
(leading to latency, α) 

• Green arrows indicate packets in transit 
(leading to a bandwidth related cost 
proportional to β and the length of the packet)
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Cost of minimum spanning tree 
broadcast 

log( p)⎡ ⎤ α + nβ( )

number of steps cost per steps 
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Cost of minimum spanning tree 
broadcast 

log( p)⎡ ⎤ α + nβ( )

number of steps cost per steps 

Notice: attains lower bound for latency component 



168 



169 
left right mid 

me root 
dest 
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left right mid 

me root dest 

mid left right 

dest root 
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left right mid 

me root dest 

mid 
left right 

dest 
root dest dest root root 

mid mid 
left left right right 



172 

+ + + + + + + 

Reduce(-to-one) 

Before After 

+ 
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Cost of minimum spanning tree 
reduce(-to-one) 

log( p)⎡ ⎤ α + nβ + nγ( )

number of steps cost per steps 
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Cost of minimum spanning tree 
reduce(-to-one) 

log( p)⎡ ⎤ α + nβ + nγ( )

number of steps cost per steps 

Notice: attains lower bound for latency component 
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Scatter 

Before After 
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Cost of minimum spanning tree 
scatter 

α +
n
2k
β

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k=1

log(p)
∑

=

log( p) α +
p − 1
p
nβ

• Assumption: power of two number of nodes 
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Cost of minimum spanning tree 
scatter 

α +
n
2k
β

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k=1

log(p)
∑

=

log( p) α +
p − 1
p
nβ

• Assumption: power of two number of nodes 

Notice: attains lower bound for latency and bandwidth  
components 
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Gather 

Before After 
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Cost of minimum spanning tree 
gather 

α +
n
2k
β

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k=1

log(p)
∑

=

log( p) α +
p − 1
p
nβ

• Assumption: power of two number of nodes 
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Cost of minimum spanning tree 
gather 

α +
n
2k
β

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k=1

log(p)
∑

=

log( p) α +
p − 1
p
nβ

• Assumption: power of two number of nodes 

Notice: attains lower bound for latency and bandwidth  
components 
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Using the building blocks 
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Allgather (short vector) 
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Gather 

Allgather (short vector) 
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Broadcast 

Allgather (short vector) 
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Cost of gather/broadcast 
allgather 

log( p)α +
p − 1
p
nβ

log( p)(α + nβ )

2log( p)α +
p − 1
p

+ log( p)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ nβ

• Assumption: power of two number of nodes 

gather 

broadcast 
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Cost of gather/broadcast 
allgather 

log( p)α +
p − 1
p
nβ

log( p)(α + nβ )

2log( p)α +
p − 1
p

+ log( p)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ nβ

• Assumption: power of two number of nodes 

gather 

broadcast 

Notice: does not attain lower bound for latency or 
 bandwidth components 
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Reduce-scatter 
 (short vector) 
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Reduce(-to-one) 

Reduce-scatter 
 (short vector) 
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Scatter 

Reduce-scatter 
 (short vector) 
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Cost of Reduce(-to-one)/scatter 
Reduce-scatter 

log( p)(α + nβ + nγ )

log( p)α +
p − 1
p
nβ

2log( p)α +
p − 1
p

+ log( p)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ nβ + log( p)nγ

• Assumption: power of two number of nodes 

Reduce(-to-one) 

scatter 
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Cost of Reduce(-to-one)/scatter 
reduce-scatter 

log( p)(α + nβ + nγ )

log( p)α +
p − 1
p
nβ

2log( p)α +
p − 1
p

+ log( p)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ nβ + log( p)nγ

• Assumption: power of two number of nodes 

Reduce(-to-one) 

scatter 

Notice: does not attain lower bound for latency or 
 bandwidth components 
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Allreduce 
 (short vector) 
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Reduce(-to-one) 

Allreduce 
 (short vector) 
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Broadcast 

Allreduce 
 (short vector) 
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Cost of reduce(-to-one)/broadcast 
Allreduce 

log( p)(α + nβ + nγ )
log( p)(α + nβ )

2log( p)α + 2log( p)nβ + log( p)nγ

• Assumption: power of two number of nodes 

Reduce(-to-one) 

broadcast 
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Cost of reduce(-to-one)/broadcast 
Allreduce 

log( p)(α + nβ + nγ )
log( p)(α + nβ )

2log( p)α + 2log( p)nβ + log( p)nγ

• Assumption: power of two number of nodes 

Reduce(-to-one) 

broadcast 

Notice: does not attain lower bound for latency or 
 bandwidth components 
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Recap 
Reduce(-to-one) 

 log( p )(α + nβ + nγ )

Scatter 
 log(p)α + p−1
p
nβ

Broadcast 
 log( p )(α + nβ )

Gather 
 log(p)α + p−1
p
nβ

Allreduce 
 

Reduce-scatter 
 

Allgather 
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Recap 
Reduce(-to-one) 

 log( p )(α + nβ + nγ )

Scatter 
 log(p)α + p−1
p
nβ

Broadcast 
 log( p )(α + nβ )

Gather 
 log(p)α + p−1
p
nβ

Allreduce 
 

Reduce-scatter 
 2log ( p)α + log( p)n(β + γ ) +

p−1
p
nβ

Allgather 
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Recap 
Reduce(-to-one) 

 log( p )(α + nβ + nγ )

Scatter 
 log(p)α + p−1
p
nβ

Broadcast 
 log( p )(α + nβ )

Gather 
 log(p)α + p−1
p
nβ

Allreduce 
 2log ( p)α + log( p)n( 2β + γ )

Reduce-scatter 
 2log ( p)α + log( p)n(β + γ ) +

p−1
p
nβ

Allgather 
 2log ( p)α + log( p)nβ +

p−1
p
nβ
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Recap 
Reduce(-to-one) 

 log( p )(α + nβ + nγ )

Scatter 
 log(p)α + p−1
p
nβ

Broadcast 
 log( p )(α + nβ )

Gather 
 log(p)α + p−1
p
nβ

Allreduce 
 2log ( p)α + log( p)n( 2β + γ )

Reduce-scatter 
 2log ( p)α + log( p)n(β + γ ) +

p−1
p
nβ

Allgather 
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Recap 
Reduce(-to-one) 

 log( p )(α + nβ + nγ )

Scatter 
 log(p)α + p−1
p
nβ

Broadcast 
 log( p )(α + nβ )

Gather 
 log(p)α + p−1
p
nβ

Allreduce 
 2log ( p)α + log( p)n( 2β + γ )

Reduce-scatter 
 2log ( p)α + log( p)n(β + γ ) +

p−1
p
nβ

Allgather 
 2log ( p)α + log( p)nβ +

p−1
p
nβ
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A building block approach to 
library implementation 

•  Short vector case 
 

 
• Long vector case 

 
 
• Hybrid algorithms 
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Long vector case 

•  Primary concern:  
–  algorithms must have low cost due to vector length 
–  algorithms must avoid network conflicts 
 

•  Secondary concerns: 
–  algorithms must work for arbitrary number of nodes 

»  in particular, not just for power-of-two numbers of 
nodes 
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Long vector building blocks 

• We will show how the following building 
blocks: 
–  collect/distributed combine 
–  scatter/gather 

  can be implemented using “bucket” algorithms 
while attaining 
–  minimal cost due to length of vectors 
–  implementation for arbitrary numbers of nodes 
–  no network conflicts 

• NOTICE: scatter and gather already satisfy 
these conditions 
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General principles 

• A logical ring can be embedded in a physical 
linear array with worm-hole routing, since the 
“wrap-around” message doesn’t conflict 
–  This is used to “drop off” messages or to “pick up” 

contributions 
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• A logical ring can be embedded in a physical 
linear array with worm-hole routing, since the 
“wrap-around” message doesn’t conflict 
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General principles 

• Can be used to implement the following 
building blocks: 
–  collect 
–  distributed combine 

  using a bucket algorithm embedded in the 
physical linear array while attaining 
–  minimal cost due to vector length 
–  implementation for arbitrary numbers of nodes 
–  no network conflicts   
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Allgather 

Before After 
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Cost of bucket Allgather 

( p − 1) α +
n
p
β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

=

( p − 1)α +
p − 1
p
nβ

number of steps 
cost per steps 
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Cost of bucket Allgather 

( p − 1) α +
n
p
β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

=

( p − 1)α +
p − 1
p
nβ

number of steps 
cost per steps 

Notice: attains lower bound for bandwidth component 
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+ + + + + + + 

Reduce-scatter 

Before After 

+ 
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+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
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+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
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+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 



279 



280 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
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+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
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+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
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+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
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+ 
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+ 

+ 

+ 

+ 

+ 

+ 

+ 
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Cost of bucket distributed 
combine 

( p − 1) α +
n
p
β +

n
p
β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

=

( p − 1)α +
p − 1
p
nβ +

p− 1
p
nγ

number of steps cost per steps 
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Cost of bucket Reduce-scatter 

( p − 1) α +
n
p
β +

n
p
β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

=

( p − 1)α +
p − 1
p
nβ +

p− 1
p
nγ

number of steps cost per steps 

Notice: attains lower bound for bandwidth and 
computation component 

γ
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Scatter 

Before After 

Notice: Scatter as implemented before was optimal in  
latency and bandwidth components 
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Gather 

Before After 

Notice: Gather as implemented before was optimal in  
latency and bandwidth components 
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Using the building blocks 
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Broadcast (long vector) 
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Scatter 

Broadcast (long vector) 
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Allgather 

Broadcast (long vector) 
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Cost of scatter/allgather 
broadcast  

log( p)α +
p − 1
p
nβ

( p − 1)α + p − 1
p
nβ

(log( p) + p − 1)α + 2 p − 1
p
nβ

• Assumption: power of two number of nodes 

scatter 

allgather 
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Cost of scatter/allgather 
broadcast  

log( p)α +
p − 1
p
nβ

( p − 1)α + p − 1
p
nβ

(log( p) + p − 1)α + 2 p − 1
p
nβ

• Assumption: power of two number of nodes 

scatter 

allgather 

Notice: attains within a factor of two of the lower  
bound for bandwidth 
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Reduce(-to-one) (long vector) 
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Combine-to-one (long vector) 

Reduce-scatter 
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Combine-to-one (long vector) 

Gather 
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Cost of Reduce-scatter/Gather 
Reduce(-to-one)  

( p − 1)α + p − 1
p
nβ + p− 1

p
nγ

log( p)α + p− 1
p
nβ

(log( p) + p − 1)α + 2 p − 1
p
nβ + p− 1

p
nγ

• Assumption: power of two number of nodes 

Reduce-scatter 

gather 
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Cost of Reduce-scatter/Gather 
Reduce(-to-one)  

( p − 1)α + p − 1
p
nβ + p− 1

p
nγ

log( p)α + p− 1
p
nβ

(log( p) + p − 1)α + 2 p − 1
p
nβ + p− 1

p
nγ

• Assumption: power of two number of nodes 

Reduce-scatter 

gather 

Notice: attains within a factor of two of the lower  
bound for bandwidth and attains lower bound for 
computation 



305 

Allreduce  
 (long vector) 
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Reduce-scatter 

Allreduce  
 (long vector) 



307 

Allgather 

Allreduce 
 (long vector) 
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Cost of Reduce-scatter/Allgather 
Allreduce  

( p − 1)α + p − 1
p
nβ + p − 1

p
nγ

( p − 1)α +
p − 1
p
nβ

2( p − 1)α + 2 p − 1
p
nβ + p − 1

p
nγ

• Assumption: power of two number of nodes 

Reduce-scatter 

Allgather 
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Cost of Reduce-scatter/Allgather 
Allreduce 

( p − 1)α + p − 1
p
nβ + p − 1

p
nγ

( p − 1)α +
p − 1
p
nβ

2( p − 1)α + 2 p − 1
p
nβ + p − 1

p
nγ

• Assumption: power of two number of nodes 

Reduce-scatter 

Allgather 

Notice: attains the lower bound for bandwidth and 
computation 
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Recap 
Reduce-scatter 

 ( p−1)α+ p−1
p
n(β+γ )

Scatter 
 log(p)α + p−1
p
nβ

Allgather 
 ( p−1)α+ p−1
p
nβ

Gather 
 log(p)α + p−1
p
nβ

Allreduce 
 

Reduce(-to-one) 
 

Broadcast 
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Recap 
Reduce-scatter 

 ( p−1)α+ p−1
p
n(β+γ )

Scatter 
 log(p)α + p−1
p
nβ

Allgather 
 ( p−1)α+ p−1
p
nβ

Gather 
 log(p)α + p−1
p
nβ

Allreduce 
 

Reduce(-to-one) 
 ( p − 1 + log ( p))α +
p−1
p
n(2β + γ )

Broadcast 
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Recap 
Reduce-scatter 

 ( p−1)α+ p−1
p
n(β+γ )

Scatter 
 log(p)α + p−1
p
nβ

Allgather 
 ( p−1)α+ p−1
p
nβ

Gather 
 log(p)α + p−1
p
nβ

Allreduce 
 2( p − 1)α +
p−1
p
n(2β + γ )

Reduce(-to-one) 
 ( p − 1 + log ( p))α +
p−1
p
n(2β + γ )

Broadcast 
 (log ( p) + p − 1)α + 2

p−1
p
nβ
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Recap 
Reduce-scatter 

 ( p−1)α+ p−1
p
n(β+γ )

Scatter 
 log(p)α + p−1
p
nβ

Allgather 
 ( p−1)α+ p−1
p
nβ

Gather 
 log(p)α + p−1
p
nβ

Allreduce 
 2( p − 1)α +
p−1
p
n(2β + γ )

Reduce(-to-one) 
 ( p − 1 + log ( p))α +
p−1
p
n(2β + γ )

Broadcast 
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Recap 
Reduce-scatter 

 ( p−1)α+ p−1
p
n(β+γ )

Scatter 
 log(p)α + p−1
p
nβ

Allgather 
 ( p−1)α+ p−1
p
nβ

Gather 
 log(p)α + p−1
p
nβ

Allreduce 
 2( p − 1)α +
p−1
p
n(2β + γ )

Reduce(-to-one) 
 ( p − 1 + log ( p))α +
p−1
p
n(2β + γ )

Broadcast 
 (log ( p) + p − 1)α + 2

p−1
p
nβ
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Advanced Techniques: 
 

Taking advantage of higher 
dimensions 
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Physical 2D meshes 

•  Simple solution: embed logical linear array 
–  problem: large p  implies high latency for bucket algorithms 

• Advanced solution: perform operation in each 
dimension 
–  collect:   

collect within rows, followed by collect within columns 
–  distributed combine:  

same, in reverse 
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Example: 2D Allgather 
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Example: 2D Allgather 

Allgather in rows 
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Example: 2D Collect 

Allgather 
 in columns 
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Cost of 2D Allgather 

(c − 1)α + (c − 1) n
p
β

(r − 1)α + (r − 1) c
p
nβ

(r + c − 2)α + p − 1
p
nβ

row Allgather 

column Allgather 

latency term is  
reduced 

bandwidth term 
 is unaffected 
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Example: 2D Scatter/Allgather 
Broadcast 
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Example: 2D Scatter/Allgather 
Broadcast 

scatter in columns 
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Example: 2D Scatter/ Allgather 
Broadcast 

Scatter in rows 
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Example: 2D Scatter/ Allgather 
Broadcast 

Allgather in rows 
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Example: 2D Scatter/Collect 
Broadcast 

Allgather 
 in columns 
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Cost of 2D scatter/Allgather 
broadcast 

(log( p) + r + c − 2)α + 2 p − 1
p
nβ
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A building block approach to 
library implementation 

•  Short vector case 

•  Long vector case 

• Hybrid algorithms 



328 

Hybrid algorithms 
(intermediate length case) 

•  algorithms must balance latency, cost due to 
vector length, and network conflicts 
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Example 

• We will illustrate the techniques using the 
broadcast as an example 
–  short vector:  minimum spanning tree broadcast 
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Example: 2D Broadcast 



331 

Example: 2D Broadcast 

• Option 1: 
–  MST broadcast in column 
–  MST broadcast in rows 
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Example: 2D Broadcast 

• Option 1: 
–  MST broadcast in column 

–  MST broadcast in rows 
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Example: 2D Broadcast 

•  Option 2: 
–  Scatter in column 
–  MST broadcast in rows 
–  Allgather in columns 
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Example: 2D Broadcast 

•  Option 2: 
–  Scatter in column 
–  MST broadcast in rows 
–  Allgather in columns 
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Example: 2D Broadcast 

•  Option 2: 
–  Scatter in column 
–  MST broadcast in rows 

–  Allgather in columns 
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Example: 2D Broadcast 

•  Option 3: 
–  Scatter in column 
–  Scatter in rows 
–  Allgather in rows 
–  Allgather in columns 
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Example: 2D Broadcast 

•  Option 3: 
–  Scatter in column 
–  Scatter in rows 
–  Allgather in rows 
–  Allgather in columns 
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Example: 2D Broadcast 

•  Option 3: 
–  Scatter in column 
–  Scatter in rows 

–  Allgather in rows 
–  Allgather in columns 
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Example: 2D Broadcast 

•  Option 3: 
–  Scatter in column 
–  Scatter in rows 
–  Allgather in rows 
–  Allgather in columns 
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Cost comparison 

• Option 1: 
–  MST broadcast in column 
–  MST broadcast in rows 

• Option 2: 
–  Scatter in column 
–  MST broadcast in rows 
–  Allgather in columns 

• Option 3: 
–  Scatter in column 
–  Scatter in rows 
–  Allgather in rows 
–  Allgather in columns 

log(c)α + log(c)nβ
log(r)α + log(r)nβ
log( p)α + log( p)nβ



341 

Cost comparison 

• Option 1: 
–  MST broadcast in column 
–  MST broadcast in rows 

• Option 2: 
–  Scatter in column 
–  MST broadcast in rows 
–  Allgather in columns 

• Option 3: 
–  Scatter in column 
–  Scatter in rows 
–  Allgather in rows 
–  Allgather in columns 

log(c)α +
c− 1
c
nβ

log(r)α + log(r ) n
c
β

(c− 1)α +
c − 1
c
nβ

log( p) + c − 1( )α + 2c − 1+ log(r)
c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ nβ
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Cost comparison 

• Option 1: 
–  MST broadcast in column 
–  MST broadcast in rows 

• Option 2: 
–  Scatter in column 
–  MST broadcast in rows 
–  Allgather in columns 

• Option 3: 
–  Scatter in column 
–  Scatter in rows 
–  Allgather in rows 
–  Allgather in columns 

log(c)α + c− 1
c
nβ

log(r)α +
r − 1
r
n
c
β

(r − 1)α + r − 1
r
n
c
β

(c − 1)α +
c − 1
c
nβ

(log( p) + r + c − 2)α + 2 p − 1
p
nβ
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Cost comparison 

• Option 1: 
–  MST broadcast in column 
–  MST broadcast in rows 

• Option 2: 
–  Scatter in column 
–  MST broadcast in rows 
–  Allgather in columns 

• Option 3: 
–  Scatter in column 
–  Scatter in rows 
–  Allgather in rows 
–  Allgather in columns 

log( p)α + log( p)nβ

log( p) + c − 1( )α + 2
c − 1+ log(r)

c
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ nβ

(log( p) + r + c − 2)α + 2
p − 1
p
nβ
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Higher  dimensions 

• This technique can be extended by viewing 
one- and two-dimensional meshes logically as 
higher dimensions   
–  reduces latency 
–  incurs network conflicts 
–  can be used to create faster short vector implementations 

• Details require more time that is available 
today 
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Other  techniques 

•  Pipelined algorithms   
–  can be used to further reduce the cost of broadcast and 

combine-to-one for long vectors 
–  very effective on hypercubes  

»  (Ho and Johnsson) 
–  effective on meshes with low latency  

»  (Watts and van de Geijn) 
–  complicated to implement, analyze and explain 
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Outline 

Part I:  Theory 
• Model of computation 
• Collective communications 
• A building block approach to library 

implementation 

Part II: Practice 
•  Implementation on the Paragon 
•  Performance results 
• Applications 
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Outline 

Part I:  Theory 
• Model of computation 
• Collective communications 
• A building block approach to library 

implementation 

Part II: Practice 
•  Implementation on the Paragon 
•  Performance results 
• Applications 
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Theory is nice, but how does it 
work in practice? 

•  Paragon does not match our model 
–  Bad news: 

»  sending and receiving more complex then the model 
indicates 

»  forced messages vs. unforced messages 
»  preposted messages vs. nonpreposted messages 
»  etc. 

–  Good news: 
»  excess bandwidth in the network 



349 

Interprocessor Collective 
Communication  

(InterCom) 
Project 
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Implementation on the Paragon 

•  Short vector building blocks 
–  reduce latency by not  preposting and synchronizing 

•  Long vector building blocks 
–  improve bandwidth by preposting and synchronizing 

•  Incorporate more complex issues into model 
–  various startups, bandwidths, depending on situation 

• Use simple heuristic to choose hybrid strategy 
–  because of excess bandwidth, the mesh acts more like a 

hypercube, for which some solid theory exists 
»  (van de Geijn) 

–  details go beyond this tutorial. 
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Performance 
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Performance comparison 

• NX collective communication 
• Message Passing Interface (MPI) 

–  Reference implementation from ANL and MSU 
–  Bill Gropp, Rusty Lusk, and Tony Skjellum 

• Basic Linear Algebra Communication 
Subprograms (BLACS) 
–  Communication library of ScaLAPACK 
–  Reference implementation from the Univ. of TN 
–  Jack Dongarra and Clint Whaley 

•  Interprocessor Collective Communication (iCC) 
Library 
–  High performance implementation by the InterCom team 
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Broadcast on 16 x 32 mesh Paragon
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Broadcast on 16 x 32 mesh Paragon
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Broadcast on 16 x 32 mesh Paragon
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Broadcast on 16 x 32 mesh Paragon

0.0001

0.0010

0.0100

0.1000

1.0000

1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)

Ti
m

e 
(s

ec
on

ds
)  

 

BLACS
iCC
MPI
NX

iCC 



357 

Broadcast on 16 x 32 mesh Paragon
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Allgather on 16 x 32 mesh Paragon
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Allgather on 16 x 32 mesh Paragon
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Allgather on 16 x 32 mesh Paragon
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Allgather on 16 x 32 mesh Paragon
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Allgather on 16 x 32 mesh Paragon
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This PowerPoint presentation may be copied for 
nonprofit educational purposes.  Credit should be 
given to the InterCom project. 
 
For information, contact  

rvdg@cs.utexas.edu 
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CollMark: Collective 
Communicaton Benchmark 

A look at the current state-of-the-art 
(spring 2000) 
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How to measure the quality of an 
implementation 

• Architecture independent measure of the 
quality of the implementation: 

•  Ideally: 
  

1
)(2

),(
⎯⎯ →⎯
∞→nnppT

pncommT
)(2

),(
nppT
pncommT

21
)(2

),(
or

nppT
pncommT

n
⎯⎯ →⎯
∞→
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