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Model of Parallel Computation

* p nodes

* physical two dimensional mesh
- r rows, ¢ columns
- nodes have physical indices (i,j)

* often logically viewed as a linear array
- indexed 0, ..., p-1
- nodes are numbered in row-major order
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* often logically viewed as a linear array
- indexed 0, ..., p-1




The Cost of Communication

* send a message of length n over d links
* packetize the message
* Example: d=6




















































The Cost of Communication

* send a message of length n over d links
* k packets
* Cost:




The Cost of Communication

* send a message of length n over d links

* k packets
o +d(anet +Zﬁ) +(k—1)(anet +Z/5)

a+miud+k—0am%+d;]nﬁ

-~

a+nf

* Example revisited ...



































































Model of Parallel Computation

* a node can send directly to any other node
* a node can simultaneously receive and send

e cost of communication

- sending a message of length n between any two nodes

- if a message encounters a link that simultaneously
accomodates M messages, the cost becomes




Model of Parallel Computation

* a node can send directly to any other node
* a node can simultaneously receive and send

e cost of communication

- sending a message of length n between any two nodes

o + nfp

- if a message encounters a link that simultaneously
accomodates M messages, the cost becomes

o + Mnp




Interfering messages

* Example: two messages of length n which
share at least one link
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Collective Communications

Broadcast
Reduce(-to-one)
Scatter

Gather
Allgather
Reduce-scatter
Allreduce
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Allgather/Reduce-scatter
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Lower bounds (startup)

Broadcast
Reduce(-to-one)
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Allreduce




Lower bounds (bandwidth)

Broadcast
Reduce(-to-one)
Scatter/Gather
Allgather
Reduce-scatter

Allreduce




Outline

Part I: Theory
* Model of computation
* Collective communications

* A building block approach to library
implementation

Part II: Practice

* Implementation on the Paragon
* Performance results

* Applications




A building block approach to
library implementation

e Short vector case

* Long vector case

* Hybrid algorithms




Short vector case

* Primary concern:
— algorithms must have low latency cost

* Secondary concerns:

- algorithms must work for arbitrary number of nodes

» in particular, not just for power-of-two numbers of
nodes

- algorithms should avoid network conflicts
» not absolutely necessary, but nice if possible




Minimum spanning tree based
algorithms

* We will show how the following building
blocks:
- broadcast/combine-to-one
— scatter/gather

can be implemented using minimum spanning
trees embedded in the logical linear array while
attaining

- minimal latency

- implementation for arbitrary numbers of nodes
- no network conflicts




General principles

* message starts on one processor




General principles

* divide logical linear array in half




General principles

* send message to the half of the network that
does not contain the current node (root) that

holds the message




General principles

* send message to the half of the network that
does not contain the current node (root) that

holds the message




General principles

* continue recursively in each of the two halves
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Before






















Let us view this more closely

arrows indicate startup of communication
(leading to latency, o)

arrows indicate packets in transit
(leading to a bandwidth related cost
proportional to f and the length of the packet)


































































































































Cost of minimum spanning tree
broadcast

number of steps cost per steps




Cost of minimum spanning tree
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number of steps cost per steps




MSTBcAST( x, root, left, right )

if left = right return
mid = |(left + right)/2|
if root < mid then dest = right else dest = left

if me == root SEND( x, dest )
if me == dest RECV( x, root )

if me < mid and root < mid
MSTBcAST( x, root, left, mid )
else if me < mid and root > mid
MSTBcCAST( x, dest, left, mid )
else if me > mid and root < mid
MSTBCAST( x, dest, mid+1, right )
else if me > mid and root > mid
MSTBcCAST( x, root, mid+1, right )










dest
root dest me root dest root dest root

mid right 1left right left right left right
mid mid mid




Reduce(-to-one)

Before































Cost of minimum spanning tree
reduce(-to-one)

number of steps cost per steps




Cost of minimum spanning tree
reduce(-to-one)

number of steps cost per steps




MSTREDUCE( x, root, left, right )

if left = right return
mid = |(left + right)/2|
if root < mid then srce = right else srce = left

if me < mid and root < mid
MSTREDUCE( x, root, left, mid )
else if me < mid and root > mid
MSTREDUCE( x, srce, left, mid )
else if me > mid and root < mid
MSTREDUCE( x, srce, mid+1, right )
else if me > mid and root > mid
MSTREDUCE( x, root, mid+1, right )

if me == srce SEND( x, root )
&2 if me == root RECV( tmp, srce ) and x = x + tmp
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Cost of minimum spanning tree
scatter

* Assumption: power of two number of nodes




Cost of minimum spanning tree
scatter

* Assumption: power of two number of nodes




Gather
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Cost of minimum spanning tree

gather

* Assumption: power of two number of nodes




Cost of minimum spanning tree

gather

* Assumption: power of two number of nodes




Using the building blocks




Allgather (short vector)




Allgather (short vector)




Allgather (short vector)

/oadcast




Cost of gather/broadcast
allgather

* Assumption: power of two number of nodes

og(p)a+P 1 np

p
log(p)(a.+nf3)

2log(p)or + (1’ -1, log(p)) np
p




Cost of gather/broadcast
allgather

* Assumption: power of two number of nodes

og(p)a+P 1 np

p
log(p)(a.+nf3)

2log(p)or + (1’ -1, log(p)) np
p




Reduce-scatter
(short vector)




Reduce-scatter
(short vector)

Reduce(-to-one)




Reduce-scatter
(short vector)

Scatter




Cost of Reduce(-to-one)/scatter
Reduce-scatter

* Assumption: power of two number of nodes

scatter

2log(pa + (p !y zog(p)) nB +log(p)ny
P




Cost of Reduce(-to-one)/scatter
reduce-scatter

* Assumption: power of two number of nodes

scatter

2log(pa + (p !y zog(p)) nB +log(p)ny
P




Allreduce
(short vector)




Allreduce
(short vector)

Redum |




Allreduce
(short vector)

/oadcast




Cost of reduce(-to-one)/broadcast
Allreduce

* Assumption: power of two number of nodes

o-one) log(p)(a+nf +ny)

2log(p)o + 2log(p)np +log(p)ny




Cost of reduce(-to-one)/broadcast
Allreduce

* Assumption: power of two number of nodes

o-one) log(p)(a+nf +ny)

2log(p)o + 2log(p)np +log(p)ny




Reduce(-to-one)
log(p)(o+nf +ny)

Scatter
p—1
log(p)o+——np
p

Broadcast
log(p)(a +np)

Reduce-scatter

Allreduce

Allgather




Reduce(-to-one)
log(p)(o +nf + ny)

Reduce-scatter ;
2log(p)a +log(p)n(B +7)+ = “np

Allreduce

Allgather

Broadcast
log(p)(a +np)




Reduce(-to-one)
log(p)(a+nf +ny)

Scatter
p—1
log(p)a+——np
P

Broadcast
log(p)(c +np)

Reduce-scatter ;
2log (p)ec+ log(pIn(f + 1)+ np

Allreduce
2log(p)o +log(p)n(2B +v)

Alleather ;
2log(p)o + log(p)nf + p; np




Reduce(-to-one)
log(p)(a+np +ny)

Reduce-scatter ;
2log (p)ec+ log(pIn(f + 1)+ np

Allreduce
2log(p)a + log(p)n(2B +v)

Allgather

Broadcast
log(p)(c +np)
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Broadcast
log(p)(a +np)

Reduce-scatter ;
2log (p)ec+ log(pIn(f + 1)+ np

Allreduce
2log(p)a + log(p)n(2B +v)

Allgather ;
2log(p)ex + log(p)nf + = np




A building block approach to
library implementation

e Short vector case

* Long vector case

* Hybrid algorithms




Long vector case

* Primary concern:
- algorithms must have low cost due to vector length
— algorithms must avoid network conflicts

* Secondary concerns:

- algorithms must work for arbitrary number of nodes

» in particular, not just for power-of-two numbers of
nodes




Long vector building blocks

* We will show how the following building
blocks:
- collect/distributed combine
— scatter/gather

can be implemented using “bucket” algorithms
while attaining

— minimal cost due to length of vectors

- implementation for arbitrary numbers of nodes

- no network conflicts

* NOTICE: scatter and gather already satisfy
these conditions




General principles

* A logical ring can be embedded in a physical
linear array with worm-hole routing, since the
“wrap-around” message doesn’ t conflict

~ This is used to “drop off” messages or to “pick up”
contributions







* A logical ring can be embedded in a physical
linear array with worm-hole routing, since the
“wrap-around” message doesn’ t conflict













General principles

* Can be used to implement the following
building blocks:
— collect
- distributed combine

using a bucket algorithm embedded in the
physical linear array while attaining

- minimal cost due to vector length

- implementation for arbitrary numbers of nodes

- no network conflicts




Allgather

Before


























































Cost of bucket Allgather

/'

number of steps

cost per steps




Cost of bucket Allgather

/'

number of steps

cost per steps




Reduce-scatter

Before


























































Cost of bucket distributed
combine

number of steps cost per steps




Cost of bucket Reduce-scatter

==

number of steps = cost per steps

(p—])a+p;1n[)’+p_1ny

p




Scatter
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Using the building blocks




Broadcast (long vector)




Broadcast (long vector)




Broadcast (long vector)

Allgather




Cost of scatter/allgather
broadcast

(log(p)+p—-1Doa+ 2P~ ]n[J’
p




Cost of scatter/allgather
broadcast

(log(p)+p—-1Doa+ 2P~ ]n[J’
p

within a factor of two




Reduce(-to-one) (long vector)




Combine-to-one (long vector)

Reduce-scatte




Combine-to-one (long vector)

Gather




Cost of Reduce-scatter/Gather
Reduce(-to-one)

: power of two number of nodes

p_]nﬁ+p_]ny
P )%

— 1
er log(p)a+p np
P
(log(p)+p—])a+2p;]n[3’+p;]ny




Cost of Reduce-scatter/Gather
Reduce(-to-one)

: power of two number of nodes

p_]nﬁ+p_]ny
P )%

— 1
er log(p)a+p np

P
(log(p)+p—])a+2p;]n[3’+p;]ny

within a factor of two




Allreduce
(long vector)




Allreduce
(long vector)

Reduce-scatter




Allreduce
(long vector)

Allgather




Cost of Reduce-scatter/Allgather
Allreduce




Cost of Reduce-scatter/Allgather
Allreduce




Reduce-scatter

(p—z)a+p;1 n(B+y)

Scatter
p—1
log(p)o+——np
p

Allgathler
(p-Da+P="np
p

Reduce(-to-one)

Allreduce

Broadcast




Reduce-scatter

(p—z)a+p;1 n(B+y)

Scatter
p—1
log(p)o+——np
p

Allgathler
(p-Da+P="np
p

Reduce(-to-o]ne)
(p=1+log(p))a+© = n(2p +7)

Allreduce

Broadcast




Reduce-scatter

(p—z)a+p;1 n(B+y)

Reduce(—to-O}le)
(p=1+log(p)a+ " “n(2p +7)

Allred111ce
2(p-Da +p;n(2/3+ v)

Broadcast

(log(p)+p-1Da + 2p_1n/5
Alleather P

(p—])a+p_] np
p




Reduce-scatter

(p—z)a+p;1 n(B+y)

Scatter
p—1
log(p)o+——np
p

Allgathler
(r-Da+P="np
p

Reduce(—to-O}le)
(p=1+log(p)a+ " “n(2p +7)

Allredtllce
2@—0a+ﬁ;n0ﬁ+w

Broadcast




Recap

Reduce-scatter

(p—z)a+p;1 n(B+y)

Reduce(-to-one)

(p—1+log(p)a+L " n(2p + )
Scatter p

log(p)a +p_1n/3
p

Allreduce

2(p-Da +p_1n(2/3+ v)
Gather P

log(p)a +p_1n/3
p

Broadcast

(log(p)+p-1Da + 2p_1n/3
Allgather P

(p—])a+p_1 np
p




Advanced Techniques:

Taking advantage of higher

dimensions




Physical 2D meshes

* Simple solution: embed logical linear array
- problem: large p implies high latency for bucket algorithms

* Advanced solution: perform operation in each
dimension
— collect:
collect within rows, followed by collect within columns
— distributed combine:

same, in reverse
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Allgather in row
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Cost of 2D Allgather

n

(c-Da+(c-1) p

bandwidth term

latency term is is unaffected

reduced
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Example: 2D Scatter/Allgather
Broadcast

N

scatter in columns




Example: 2D Scatter/ Allgather
Broadcast

Scatter in rows
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Cost of 2D scatter/Allgather
broadcast

(log(p)+r+c—2)(x+2p_]n[3’
p




A building block approach to
library implementation

e Short vector case

* Long vector case

* Hybrid algorithms




Hybrid algorithms
(intermediate length case)

* algorithms must balance latency, cost due to
vector length, and network conflicts




Example

* We will illustrate the techniques using the
broadcast as an example

— short vector: minimum spanning tree broadcast
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Example: 2D Broadcast

* Option 1:
— MST broadcast in column
— MST broadcast in rows
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Example: 2D Broadcast

* Option 2:
— Scatter in column

- MST broadcast in rows
- Allgather in columns




Example: 2D Broadcast

* Option 2:
- Scatter in column
-~ MST broadcast in rows
- Allgather in columns
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* Option 2

— Scatter in column

- MST broadcast in rows

- Allgather in columns




Example: 2D Broadcast

* Option 3:
- Scatter in column
- Scatter in rows
- Allgather in rows
- Allgather in columns




Example: 2D Broadcast

* Option 3:
- Scatter in column
- Scatter in rows
- Allgather in rows
- Allgather in columns




Example: 2D Broadcast

* Option 3:
- Scatter in column
- Scatter in rows
- Allgather in rows
- Allgather in columns
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Scatter in column

Scatter in rows
- Allgather in columns

- Allgather in rows




Cost comparison

* Option 1:
- MST broadcast in column log(c)a +log(c)np
- MST broadcast in rows log(r)a + log(r)nP

* Option 2: log(p)o + log(p)np
— Scatter in column
- MST broadcast in rows
— Allgather in columns

* Option 3:
— Scatter in column
— Scatter in rows

— Allgather in rows
- Allgather in columns




Cost comparison

* Option 1:
— MST broadcast in column
— MST broadcast in rows

* Option 2:
— Scatter in column log(r)o +log(r )n i
c

-~ MST broadcast in rows
- Allgather in columns

* Option 3: cc— 1+ log(r)
— Scatter in column C
— Scatter in rows
— Allgather in rows
- Allgather in columns

log(c)a + C_]n/J’
c




Cost comparison

* Option 1:
— MST broadcast in column
— MST broadcast in rows

* Option 2:
— Scatter in column c— ]
- MST broadcast in rows log(c)oo+——np
- Allgather in columns r < In

e Option 3: log(rjar+ == P
- Scatter in column
— Scatter in rows
— Allgather in rows
- Allgather in columns

(log(p)+r+c—2)a+2P~1up
p




Cost comparison

* Option 1:
-~ MST broadcast in column log(p)a + log(p)np

— MST broadcast in rows

* Option 2:
— Scatter in column

— MST broadcast in rows (log(p)+c—1)o + (2
— Allgather in columns

* Option 3:
— Scatter in column
— Scatter in rows

-1
- Allgather in rows (log(p)+r+c—-2)a + 2P np
- Allgather in columns I

c—1+log(r)

L

C




Higher dimensions

* This technique can be extended by viewing
one- and two-dimensional meshes logically as
higher dimensions

— reduces latency
— incurs network conflicts
— can be used to create faster short vector implementations

* Details require more time that is available
today




Other techniques

* Pipelined algorithms

— can be used to further reduce the cost of broadcast and
combine-to-one for long vectors

- very effective on hypercubes
» (Ho and Johnsson)
— effective on meshes with low latency
» (Watts and van de Geijn)
— complicated to implement, analyze and explain
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Theory is nice, but how does it
work in practice?

* Paragon does not match our model

- Bad news:

» sending and receiving more complex then the model
indicates

» forced messages vs. unforced messages
» preposted messages vs. nonpreposted messages
» etc.
- Good news:
» excess bandwidth in the network




Interprocessor Collective
Communication
(InterCom)

Project




Implementation on the Paragon

Short vector building blocks

- reduce latency by not preposting and synchronizing

Long vector building blocks

- improve bandwidth by preposting and synchronizing

Incorporate more complex issues into model
— various startups, bandwidths, depending on situation

Use simple heuristic to choose hybrid strategy

- because of excess bandwidth, the mesh acts more like a
hypercube, for which some solid theory exists

» (van de Geijn)
~ details go beyond this tutorial.




Performance




Performance comparison

e NX collective communication

* Message Passing Interface (MPI)
- Reference implementation from ANL and MSU
- Bill Gropp, Rusty Lusk, and Tony Skjellum

e Basic Linear Algebra Communication
Subprograms (BLACS)

-~ Communication library of ScaLAPACK
- Reference implementation from the Univ. of TN
— Jack Dongarra and Clint Whaley

* Interprocessor Collective Communication (iCC)
Library

- High performance implementation by the InterCom team
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Broadcast on 16 x 32 mesh Paragon
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Broadcast on 16 x 32 mesh Paragon
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Allgather on 16 x 32 mesh Paragon
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Allgather on 16 x 32 mesh Paragon
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This PowerPoint presentation may be copied for
nonprofit educational purposes. Credit should be
given to the InterCom project.

For information, contact

rvdg@cs.utexas.edu




CollMark: Collective
Communicaton Benchmark

A look at the current state-of-the-art
(spring 2000)




How to measure the quality of an
implementation

* Architecture independent measure of the
quality of the implementation:

TCOWZWI (na p)




Broadcast 256 nodes
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