Collective Communication:
Theory and Practice

Robert van de Geijn




Acknowledgements

This presentation is based on work in the
mid-1990s that was sponsored in part by the Intel
Research Council and Intel Scalable Systems
Division. At that time, David Payne, Lance
Shuler, and Jerrell Watts contributed to the
research




Outline

Part I: Theory

* Model of parallel computation

* Collective communications

* A building block approach to library

implementation

Part II: Practice
* Implementation on the Paragon
e Performance results



Outline

Part I: Theory
* Model of parallel computation

e Collective communications

* A building block approach to library
implementation

Part II: Practice
* Implementation on the Paragon
e Performance results



Model of Parallel Computation

* p nodes

* physical two dimensional mesh
- r rows, ¢ columns
- nodes have physical indices (i,j)

* often logically viewed as a linear array
- indexed 0, ..., p-1
- nodes are numbered in row-major order




* physical two dimensional mesh

- r rows, ¢ columns

- nodes have physical indices (i,j)




* often logically viewed as a linear array
- indexed 0, ..., p-1

- nodes are numbered in row-major order




* often logically viewed as a linear array
- indexed 0, ..., p-1




The Cost of Communication

* send a message of length n over d links
* packetize the message
* Example: d=6




















































The Cost of Communication

* send a message of length n over d links
* k packets
* Cost:




The Cost of Communication

* send a message of length n over d links

* k packets
o +d(anet +Zﬁ) +(k—1)(anet +Z/5)

a+miud+k—0am%+d;]nﬁ

-~

a+nf

* Example revisited ...



































































Model of Parallel Computation

* a node can send directly to any other node
* a node can simultaneously receive and send

e cost of communication

- sending a message of length n between any two nodes

- if a message encounters a link that simultaneously
accomodates M messages, the cost becomes




Model of Parallel Computation

* a node can send directly to any other node
* a node can simultaneously receive and send

e cost of communication

- sending a message of length n between any two nodes

o + nfp

- if a message encounters a link that simultaneously
accomodates M messages, the cost becomes

o + Mnp




Interfering messages

* Example: two messages of length n which
share at least one link

























































































































Outline

Part I: Theory
* Model of computation

e Collective communications

* A building block approach to library
implementation

Part II: Practice

* Implementation on the Paragon
e Performance results

* Applications



Collective Communications

Broadcast
Reduce(-to-one)
Scatter

Gather
Allgather
Reduce-scatter
Allreduce




Broadcast

Before




Reduce(-to-one)

Before




Broadcast/Reduce(-to-one)

“~___ Reduce(-to-one




Scatter

Before




Gather

Before




Scatter/Gather




Allgather

Before




Reduce-scatter

Before




Allgather/Reduce-scatter

Allgather

Reduce-scatter




Allreduce

Before




Lower bounds (startup)

Broadcast
Reduce(-to-one)
Scatter/Gather
Allgather
Reduce-scatter

Allreduce




Lower bounds (bandwidth)

Broadcast
Reduce(-to-one)
Scatter/Gather
Allgather
Reduce-scatter

Allreduce




Outline

Part I: Theory
* Model of computation
* Collective communications

* A building block approach to library
implementation

Part II: Practice

* Implementation on the Paragon
* Performance results

* Applications




A building block approach to
library implementation

e Short vector case

* Long vector case

* Hybrid algorithms




Short vector case

* Primary concern:
— algorithms must have low latency cost

* Secondary concerns:

- algorithms must work for arbitrary number of nodes

» in particular, not just for power-of-two numbers of
nodes

- algorithms should avoid network conflicts
» not absolutely necessary, but nice if possible




Minimum spanning tree based
algorithms

* We will show how the following building
blocks:
- broadcast/combine-to-one
— scatter/gather

can be implemented using minimum spanning
trees embedded in the logical linear array while
attaining

- minimal latency

- implementation for arbitrary numbers of nodes
- no network conflicts




General principles

* message starts on one processor




General principles

* divide logical linear array in half




General principles

* send message to the half of the network that
does not contain the current node (root) that

holds the message




General principles

* send message to the half of the network that
does not contain the current node (root) that

holds the message




General principles

* continue recursively in each of the two halves




Broadcast

Before






















Let us view this more closely

arrows indicate startup of communication
(leading to latency, o)

arrows indicate packets in transit
(leading to a bandwidth related cost
proportional to f and the length of the packet)


































































































































Cost of minimum spanning tree
broadcast

number of steps cost per steps




Cost of minimum spanning tree
broadcast

number of steps cost per steps




MSTBcAST( x, root, left, right )

if left = right return
mid = |(left + right)/2|
if root < mid then dest = right else dest = left

if me == root SEND( x, dest )
if me == dest RECV( x, root )

if me < mid and root < mid
MSTBcAST( x, root, left, mid )
else if me < mid and root > mid
MSTBcCAST( x, dest, left, mid )
else if me > mid and root < mid
MSTBCAST( x, dest, mid+1, right )
else if me > mid and root > mid
MSTBcCAST( x, root, mid+1, right )










dest
root dest me root dest root dest root

mid right 1left right left right left right
mid mid mid




Reduce(-to-one)

Before































Cost of minimum spanning tree
reduce(-to-one)

number of steps cost per steps




Cost of minimum spanning tree
reduce(-to-one)

number of steps cost per steps




MSTREDUCE( x, root, left, right )

if left = right return
mid = |(left + right)/2|
if root < mid then srce = right else srce = left

if me < mid and root < mid
MSTREDUCE( x, root, left, mid )
else if me < mid and root > mid
MSTREDUCE( x, srce, left, mid )
else if me > mid and root < mid
MSTREDUCE( x, srce, mid+1, right )
else if me > mid and root > mid
MSTREDUCE( x, root, mid+1, right )

if me == srce SEND( x, root )
&2 if me == root RECV( tmp, srce ) and x = x + tmp




Scatter

Before














































Cost of minimum spanning tree
scatter

* Assumption: power of two number of nodes




Cost of minimum spanning tree
scatter

* Assumption: power of two number of nodes




Gather

Before














































Cost of minimum spanning tree

gather

* Assumption: power of two number of nodes




Cost of minimum spanning tree

gather

* Assumption: power of two number of nodes




Using the building blocks




Allgather (short vector)




Allgather (short vector)




Allgather (short vector)

/oadcast




Cost of gather/broadcast
allgather

* Assumption: power of two number of nodes

og(p)a+P 1 np

p
log(p)(a.+nf3)

2log(p)or + (1’ -1, log(p)) np
p




Cost of gather/broadcast
allgather

* Assumption: power of two number of nodes

og(p)a+P 1 np

p
log(p)(a.+nf3)

2log(p)or + (1’ -1, log(p)) np
p




Reduce-scatter
(short vector)




Reduce-scatter
(short vector)

Reduce(-to-one)




Reduce-scatter
(short vector)

Scatter




Cost of Reduce(-to-one)/scatter
Reduce-scatter

* Assumption: power of two number of nodes

scatter

2log(pa + (p !y zog(p)) nB +log(p)ny
P




Cost of Reduce(-to-one)/scatter
reduce-scatter

* Assumption: power of two number of nodes

scatter

2log(pa + (p !y zog(p)) nB +log(p)ny
P




Allreduce
(short vector)




Allreduce
(short vector)

Redum |




Allreduce
(short vector)

/oadcast




Cost of reduce(-to-one)/broadcast
Allreduce

* Assumption: power of two number of nodes

o-one) log(p)(a+nf +ny)

2log(p)o + 2log(p)np +log(p)ny




Cost of reduce(-to-one)/broadcast
Allreduce

* Assumption: power of two number of nodes

o-one) log(p)(a+nf +ny)

2log(p)o + 2log(p)np +log(p)ny




Reduce(-to-one)
log(p)(o+nf +ny)

Scatter
p—1
log(p)o+——np
p

Broadcast
log(p)(a +np)

Reduce-scatter

Allreduce

Allgather




Reduce(-to-one)
log(p)(o +nf + ny)

Reduce-scatter ;
2log(p)a +log(p)n(B +7)+ = “np

Allreduce

Allgather

Broadcast
log(p)(a +np)




Reduce(-to-one)
log(p)(a+nf +ny)

Scatter
p—1
log(p)a+——np
P

Broadcast
log(p)(c +np)

Reduce-scatter ;
2log (p)ec+ log(pIn(f + 1)+ np

Allreduce
2log(p)o +log(p)n(2B +v)

Alleather ;
2log(p)o + log(p)nf + p; np




Reduce(-to-one)
log(p)(a+np +ny)

Reduce-scatter ;
2log (p)ec+ log(pIn(f + 1)+ np

Allreduce
2log(p)a + log(p)n(2B +v)

Allgather

Broadcast
log(p)(c +np)




Reduce(-to-one)
log(p)(a+nf +ny)

Scatter
p—1
log(p)a+——np
P

Broadcast
log(p)(a +np)

Reduce-scatter ;
2log (p)ec+ log(pIn(f + 1)+ np

Allreduce
2log(p)a + log(p)n(2B +v)

Allgather ;
2log(p)ex + log(p)nf + = np




A building block approach to
library implementation

e Short vector case

* Long vector case

* Hybrid algorithms




Long vector case

* Primary concern:
- algorithms must have low cost due to vector length
— algorithms must avoid network conflicts

* Secondary concerns:

- algorithms must work for arbitrary number of nodes

» in particular, not just for power-of-two numbers of
nodes




Long vector building blocks

* We will show how the following building
blocks:
- collect/distributed combine
— scatter/gather

can be implemented using “bucket” algorithms
while attaining

— minimal cost due to length of vectors

- implementation for arbitrary numbers of nodes

- no network conflicts

* NOTICE: scatter and gather already satisfy
these conditions




General principles

* A logical ring can be embedded in a physical
linear array with worm-hole routing, since the
“wrap-around” message doesn’ t conflict

~ This is used to “drop off” messages or to “pick up”
contributions







* A logical ring can be embedded in a physical
linear array with worm-hole routing, since the
“wrap-around” message doesn’ t conflict













General principles

* Can be used to implement the following
building blocks:
— collect
- distributed combine

using a bucket algorithm embedded in the
physical linear array while attaining

- minimal cost due to vector length

- implementation for arbitrary numbers of nodes

- no network conflicts




Allgather

Before


























































Cost of bucket Allgather

/'

number of steps

cost per steps




Cost of bucket Allgather

/'

number of steps

cost per steps




Reduce-scatter

Before


























































Cost of bucket distributed
combine

number of steps cost per steps




Cost of bucket Reduce-scatter

==

number of steps = cost per steps

(p—])a+p;1n[)’+p_1ny

p




Scatter

Before




Gather

Before




Using the building blocks




Broadcast (long vector)




Broadcast (long vector)




Broadcast (long vector)

Allgather




Cost of scatter/allgather
broadcast

(log(p)+p—-1Doa+ 2P~ ]n[J’
p




Cost of scatter/allgather
broadcast

(log(p)+p—-1Doa+ 2P~ ]n[J’
p

within a factor of two




Reduce(-to-one) (long vector)




Combine-to-one (long vector)

Reduce-scatte




Combine-to-one (long vector)

Gather




Cost of Reduce-scatter/Gather
Reduce(-to-one)

: power of two number of nodes

p_]nﬁ+p_]ny
P )%

— 1
er log(p)a+p np
P
(log(p)+p—])a+2p;]n[3’+p;]ny




Cost of Reduce-scatter/Gather
Reduce(-to-one)

: power of two number of nodes

p_]nﬁ+p_]ny
P )%

— 1
er log(p)a+p np

P
(log(p)+p—])a+2p;]n[3’+p;]ny

within a factor of two




Allreduce
(long vector)




Allreduce
(long vector)

Reduce-scatter




Allreduce
(long vector)

Allgather




Cost of Reduce-scatter/Allgather
Allreduce




Cost of Reduce-scatter/Allgather
Allreduce




Reduce-scatter

(p—z)a+p;1 n(B+y)

Scatter
p—1
log(p)o+——np
p

Allgathler
(p-Da+P="np
p

Reduce(-to-one)

Allreduce

Broadcast




Reduce-scatter

(p—z)a+p;1 n(B+y)

Scatter
p—1
log(p)o+——np
p

Allgathler
(p-Da+P="np
p

Reduce(-to-o]ne)
(p=1+log(p))a+© = n(2p +7)

Allreduce

Broadcast




Reduce-scatter

(p—z)a+p;1 n(B+y)

Reduce(—to-O}le)
(p=1+log(p)a+ " “n(2p +7)

Allred111ce
2(p-Da +p;n(2/3+ v)

Broadcast

(log(p)+p-1Da + 2p_1n/5
Alleather P

(p—])a+p_] np
p




Reduce-scatter

(p—z)a+p;1 n(B+y)

Scatter
p—1
log(p)o+——np
p

Allgathler
(r-Da+P="np
p

Reduce(—to-O}le)
(p=1+log(p)a+ " “n(2p +7)

Allredtllce
2@—0a+ﬁ;n0ﬁ+w

Broadcast




Recap

Reduce-scatter

(p—z)a+p;1 n(B+y)

Reduce(-to-one)

(p—1+log(p)a+L " n(2p + )
Scatter p

log(p)a +p_1n/3
p

Allreduce

2(p-Da +p_1n(2/3+ v)
Gather P

log(p)a +p_1n/3
p

Broadcast

(log(p)+p-1Da + 2p_1n/3
Allgather P

(p—])a+p_1 np
p




Advanced Techniques:

Taking advantage of higher

dimensions




Physical 2D meshes

* Simple solution: embed logical linear array
- problem: large p implies high latency for bucket algorithms

* Advanced solution: perform operation in each
dimension
— collect:
collect within rows, followed by collect within columns
— distributed combine:

same, in reverse




Yo
oV
5
e
L)
o)
—
<
Q
Q|

Example

NEEN
CSEEE
OEED
|

ONEN
EEE=
HFENH
| |

NN
EE
En

|

NN

CE

NERN

EEEE

OEED
|

OIOZ

EEEE

HEEH
|

[\

m

IQZ
HE®
ol




ZQIQ , ZIZI/ r/IQZ
OEED OEED ] § -
| | |

ONEN NENN SENN NERN
HENH ENE=* HEEH HEE =
| | | |

Yo
oV
5
e
L)
o)
—
<
Q
Q|

Example

Allgather in row




e
o
3

—
S

O

-

~
NFM

|
=
&
=
%

it

NEEN
CSEEE
OEED
|

ONEN
EEE=
HFENH

| |

NN
EE
En

|

NN

CE

NN

EEET

OEED
|

NN

OIOZ
EENE
HEEEH
[ |

OIQZ
EEEE
] § -
|

NEND
EEES
u

Allgather

lumns

1n co




Cost of 2D Allgather

n

(c-Da+(c-1) p

bandwidth term

latency term is is unaffected

reduced




NEEN
CSEEE
OEED
|

ONEN
EEE=
HFENH
| |

Broadcast

Yo
D)
=
whd
(qv)
50
=
=
D)
whd
whd
(g}
&
7p
-
(q\

Example

ZIZO
EEEE
IEED
[ |

NN
EE
En

|

NN

CE

NN

EEEE

OEED
|

NN

OIOZ

EEEE

HEEH
|

[\

m

IQZ
HEE
HET




Example: 2D Scatter/Allgather
Broadcast

N

scatter in columns




Example: 2D Scatter/ Allgather
Broadcast

Scatter in rows




Yo
(D)
=
whd
(g}
o)
—
<
=
QD
whd
whd
(g}
&
7p
o)
(q\|

Example

Broadcast

NEEN
CSEEE
OEED
|

ONEN
EEE=
HFENH

| |

NN
EE
En

|

NN

CE

NE

EEE

EEED
]

NN

OIOZ
EENE
HEEEH
[ |

OIQZ
EEEE
] § -
|

NEND
EEES
u

Allgather in row




whd
&
D
—(
—(
O
=
D
wld
whd
(qv
&
7p
o)
(q\|

Example

Broadcast

NEEN
CSEEE
OEED
|

ONEN
EEE=
HFENH

| |

NN
EE
En

|

NN

CE

NN

EEET

OEED
|

NN

OIOZ
EENE
HEEEH
[ |

OIQZ
EEEE
] § -
|

NEND
EEES
u

Allgather

lumns

1n Cco




Cost of 2D scatter/Allgather
broadcast

(log(p)+r+c—2)(x+2p_]n[3’
p




A building block approach to
library implementation

e Short vector case

* Long vector case

* Hybrid algorithms




Hybrid algorithms
(intermediate length case)

* algorithms must balance latency, cost due to
vector length, and network conflicts




Example

* We will illustrate the techniques using the
broadcast as an example

— short vector: minimum spanning tree broadcast




NEEN
CSEEE
OEED
|

ONEN
EEE=
HFENH
| |

e
Vs
%
o

ge
=
o
Yo

aa

O

X

Example

ZIZO
EEEE
IEED
[ |

NN
EE
En

|

NN

CE

NN

EEEE

OEED
|

NN

OIOZ

EEEE

HEEH
|

OIQZ
EEEE
] § -




Example: 2D Broadcast

* Option 1:
— MST broadcast in column
— MST broadcast in rows




ZIZI/ , ZIZI/
ENE HEBE =
|

NEEN . NERN SENN
OEED OEED ] § -
| | |

ONEN NENN SENN NERN
HENH ENE=* HEEH HEE =
| | | |

2D Broadcast

Example

— MST broadcast in rows

=
&
=
L
o
o
=
e
7
5
Q
o
5
=)
=
e
-
m
_

ZIZ/

HEERE

OEED
|

* Option1




Example: 2D Broadcast

* Option 2:
— Scatter in column

- MST broadcast in rows
- Allgather in columns




Example: 2D Broadcast

* Option 2:
- Scatter in column
-~ MST broadcast in rows
- Allgather in columns




e
Vs
%
o

ge
=
o
Yo
aa
O
X

Example

NEEN

CSEEE

OEED
|

ONEN
EEE=
HFENH

| |

NERN

EEEE

OEED
|

OIOZ

EEEE

HEEH
|

* Option 2

— Scatter in column

- MST broadcast in rows

- Allgather in columns




Example: 2D Broadcast

* Option 3:
- Scatter in column
- Scatter in rows
- Allgather in rows
- Allgather in columns




Example: 2D Broadcast

* Option 3:
- Scatter in column
- Scatter in rows
- Allgather in rows
- Allgather in columns




Example: 2D Broadcast

* Option 3:
- Scatter in column
- Scatter in rows
- Allgather in rows
- Allgather in columns




z.zo

EEEN

HEEH
]

NEEN . NERN SENN
OEED OEED ] § -
| | |

ONEN NENN SENN NN
HENH ENE=* HEEH HEE =
| | | |

NN

e
Vs
%
o

ge
=
o
Yo
aa
O
X

Example
Scatter in column

Scatter in rows
- Allgather in columns

- Allgather in rows




Cost comparison

* Option 1:
- MST broadcast in column log(c)a +log(c)np
- MST broadcast in rows log(r)a + log(r)nP

* Option 2: log(p)o + log(p)np
— Scatter in column
- MST broadcast in rows
— Allgather in columns

* Option 3:
— Scatter in column
— Scatter in rows

— Allgather in rows
- Allgather in columns




Cost comparison

* Option 1:
— MST broadcast in column
— MST broadcast in rows

* Option 2:
— Scatter in column log(r)o +log(r )n i
c

-~ MST broadcast in rows
- Allgather in columns

* Option 3: cc— 1+ log(r)
— Scatter in column C
— Scatter in rows
— Allgather in rows
- Allgather in columns

log(c)a + C_]n/J’
c




Cost comparison

* Option 1:
— MST broadcast in column
— MST broadcast in rows

* Option 2:
— Scatter in column c— ]
- MST broadcast in rows log(c)oo+——np
- Allgather in columns r < In

e Option 3: log(rjar+ == P
- Scatter in column
— Scatter in rows
— Allgather in rows
- Allgather in columns

(log(p)+r+c—2)a+2P~1up
p




Cost comparison

* Option 1:
-~ MST broadcast in column log(p)a + log(p)np

— MST broadcast in rows

* Option 2:
— Scatter in column

— MST broadcast in rows (log(p)+c—1)o + (2
— Allgather in columns

* Option 3:
— Scatter in column
— Scatter in rows

-1
- Allgather in rows (log(p)+r+c—-2)a + 2P np
- Allgather in columns I

c—1+log(r)

L

C




Higher dimensions

* This technique can be extended by viewing
one- and two-dimensional meshes logically as
higher dimensions

— reduces latency
— incurs network conflicts
— can be used to create faster short vector implementations

* Details require more time that is available
today




Other techniques

* Pipelined algorithms

— can be used to further reduce the cost of broadcast and
combine-to-one for long vectors

- very effective on hypercubes
» (Ho and Johnsson)
— effective on meshes with low latency
» (Watts and van de Geijn)
— complicated to implement, analyze and explain




Outline

Part I: Theory
* Model of computation
* Collective communications

* A building block approach to library
implementation

Part II: Practice

* Implementation on the Paragon
 Performance results

* Applications



Outline

Part I: Theory

* Model of computation

* Collective communications

* A building block approach to library

implementation

Part II: Practice

* Implementation on the Paragon
* Performance results

* Applications



Theory is nice, but how does it
work in practice?

* Paragon does not match our model

- Bad news:

» sending and receiving more complex then the model
indicates

» forced messages vs. unforced messages
» preposted messages vs. nonpreposted messages
» etc.
- Good news:
» excess bandwidth in the network




Interprocessor Collective
Communication
(InterCom)

Project




Implementation on the Paragon

Short vector building blocks

- reduce latency by not preposting and synchronizing

Long vector building blocks

- improve bandwidth by preposting and synchronizing

Incorporate more complex issues into model
— various startups, bandwidths, depending on situation

Use simple heuristic to choose hybrid strategy

- because of excess bandwidth, the mesh acts more like a
hypercube, for which some solid theory exists

» (van de Geijn)
~ details go beyond this tutorial.




Performance




Performance comparison

e NX collective communication

* Message Passing Interface (MPI)
- Reference implementation from ANL and MSU
- Bill Gropp, Rusty Lusk, and Tony Skjellum

e Basic Linear Algebra Communication
Subprograms (BLACS)

-~ Communication library of ScaLAPACK
- Reference implementation from the Univ. of TN
— Jack Dongarra and Clint Whaley

* Interprocessor Collective Communication (iCC)
Library

- High performance implementation by the InterCom team




Broadcast on 16 x 32 mesh Paragon

—
2]
©
c
o
o
]
o
)
Ig
|—

0.0001
1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)




Broadcast on 16 x 32 mesh Paragon

—
2]
©
c
o
o
]
o
)
Ig
|—

0.0001
1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)




Broadcast on 16 x 32 mesh Paragon

—
2]
©
c
o
o
]
o
)
Ig
|—

0.0001
1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)




Broadcast on 16 x 32 mesh Paragon

—
2]
©
c
o
o
]
o
)
Ig
|—

m L]
= m /%7!/&% z ———
s

0.0001
1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)




Broadcast on 16 x 32 mesh Paragon

o
W
=)

—
2]
©
c
o
o
]
o
)
Ig
|—

o
N)
(=)

o

0 .

0.00 7 S \ \ \
0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06 1.2E+06

Message Length (bytes)




Allgather on 16 x 32 mesh Paragon

10.0000

m
O
c
o
o
(]
L)
()
£
-

1.0E+02 1.0E+04

Message Length (bytes)




Allgather on 16 x 32 mesh Paragon

10.0000

m
O
c
o
o
(]
L)
()
£
-

1.0E+02 1.0E+04

Message Length (bytes)




Allgather on 16 x 32 mesh Paragon

10.0000

m
O
c
o
o
(]
L)
()
£
-

1.0E+02 1.0E+04

Message Length (bytes)




Allgather on 16 x 32 mesh Paragon

10.0000

mn
©
c
o
O
[<b)
o
Q
E
|—

0.0001 L L 11 11| I I
1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)




Allgather on 16 x 32 mesh Paragon

o
o

5
o

e
o

m
©
c
o
O
D
08
<b)
£
-

0.0 sl % . . — . .
0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06 1.2E+06

362 Message Length (bytes)




This PowerPoint presentation may be copied for
nonprofit educational purposes. Credit should be
given to the InterCom project.

For information, contact

rvdg@cs.utexas.edu




CollMark: Collective
Communicaton Benchmark

A look at the current state-of-the-art
(spring 2000)




How to measure the quality of an
implementation

* Architecture independent measure of the
quality of the implementation:

TCOWZWI (na p)




Broadcast 256 nodes

-
ou

"

-
o

—
o-.

<
0
E
5]
o
§)
»
:.2‘
U
2
o
E

-
oO

10°
message size n (in inlegers)

—y
o




