

Collective Communication:

Theory and Practice

Robert van de Geijn

2

This presentation is based on work in the
mid-1990s that was sponsored in part by the Intel
Research Council and Intel Scalable Systems
Division. At that time, David Payne, Lance
Shuler, and Jerrell Watts contributed to the
research

Acknowledgements

3

Outline

Part I: Theory
• Model of parallel computation
• Collective communications
• A building block approach to library

implementation

Part II: Practice
•  Implementation on the Paragon
•  Performance results

4

Outline

Part I: Theory
• Model of parallel computation

• Collective communications
• A building block approach to library

implementation

Part II: Practice
•  Implementation on the Paragon
•  Performance results
• Applications

5

Model of Parallel Computation

•  p nodes

•  physical two dimensional mesh
–  r rows, c columns
–  nodes have physical indices (i,j)

•  often logically viewed as a linear array
–  indexed 0, ... , p-1
–  nodes are numbered in row-major order

6

0,1 0,0 0,2 0,3

1,1 1,0 1,2 1,3

2,1 2,0 2,2 2,3

•  physical two dimensional mesh
–  r rows, c columns
–  nodes have physical indices (i,j)

7

1 0 2 3

5 4 6 7

9 8 10 11

•  often logically viewed as a linear array
–  indexed 0, ... , p-1
–  nodes are numbered in row-major order

8

1 0 2 3 4 5 6 8 7

•  often logically viewed as a linear array
–  indexed 0, ... , p-1

9

The Cost of Communication

•  send a message of length n over d links
•  packetize the message
•  Example: d=6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

The Cost of Communication

•  send a message of length n over d links
•  k packets
• Cost:

27

The Cost of Communication

•  send a message of length n over d links
•  k packets
• Cost:

•  Example revisited ...

α + d αnet +
n
k
β

⎛
⎝
⎜

⎞
⎠
⎟ + (k − 1) αnet +

n
k
β

⎛
⎝
⎜

⎞
⎠
⎟

=

α + nβ + (d + k − 1)αnet +
d − 1
k

β

≈

α + nβ

nβ

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Model of Parallel Computation

•  a node can send directly to any other node
•  a node can simultaneously receive and send
•  cost of communication

–  sending a message of length n between any two nodes

–  if a message encounters a link that simultaneously
accomodates M messages, the cost becomes

50

Model of Parallel Computation

•  a node can send directly to any other node
•  a node can simultaneously receive and send
•  cost of communication

–  sending a message of length n between any two nodes

–  if a message encounters a link that simultaneously
accomodates M messages, the cost becomes

α + nβ

α + Mnβ

51

Interfering messages

•  Example: two messages of length n which
share at least one link

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

Outline

Part I: Theory
• Model of computation
• Collective communications
• A building block approach to library

implementation

Part II: Practice
•  Implementation on the Paragon
•  Performance results
• Applications

92

Collective Communications

• Broadcast
• Reduce(-to-one)
•  Scatter
• Gather
• Allgather
• Reduce-scatter
• Allreduce

93

Broadcast

Before After

94

+ + + + + + +

Reduce(-to-one)

Before After

+

95

Broadcast/Reduce(-to-one)

Broadcast

Reduce(-to-one)

96

Scatter

Before After

97

Gather

Before After

98

Scatter/Gather

Scatter

Gather

99

Allgather

Before After

100

+ + + + + + +

Reduce-scatter

Before After

+

101

Allgather/Reduce-scatter

Allgather

Reduce-scatter

102

+ + + + + + +

Allreduce

Before After

+

103

Lower bounds (startup)

• Broadcast

• Reduce(-to-one)

•  Scatter/Gather

• Allgather

• Reduce-scatter

• Allreduce

log(p)⎡ ⎤α

log(p)⎡ ⎤α

log(p)⎡ ⎤α

log(p)⎡ ⎤α

log(p)⎡ ⎤α

log(p)⎡ ⎤α

104

Lower bounds (bandwidth)

• Broadcast

• Reduce(-to-one)

•  Scatter/Gather

• Allgather

• Reduce-scatter

• Allreduce

nβ

nβ + p − 1
p
nγ

p − 1
p
nβ

p − 1
p
nβ

p − 1
p
nβ + p − 1

p
nγ

2 p − 1
p
nβ + p − 1

p
nγ

105

Outline

Part I: Theory
• Model of computation
• Collective communications
• A building block approach to library

implementation

Part II: Practice
•  Implementation on the Paragon
•  Performance results
• Applications

106

A building block approach to
library implementation

•  Short vector case

•  Long vector case

• Hybrid algorithms

107

Short vector case

•  Primary concern:
–  algorithms must have low latency cost

•  Secondary concerns:
–  algorithms must work for arbitrary number of nodes

»  in particular, not just for power-of-two numbers of
nodes

–  algorithms should avoid network conflicts
»  not absolutely necessary, but nice if possible

108

Minimum spanning tree based
algorithms

• We will show how the following building
blocks:
–  broadcast/combine-to-one
–  scatter/gather

 can be implemented using minimum spanning
trees embedded in the logical linear array while
attaining
–  minimal latency
–  implementation for arbitrary numbers of nodes
–  no network conflicts

109

General principles

• message starts on one processor

110

General principles

•  divide logical linear array in half

111

General principles

•  send message to the half of the network that
does not contain the current node (root) that
holds the message

112

General principles

•  send message to the half of the network that
does not contain the current node (root) that
holds the message

113

General principles

•  continue recursively in each of the two halves

116

Broadcast

Before After

117

118

119

120

121

122

123

Let us view this more closely

• Red arrows indicate startup of communication
(leading to latency, α)

• Green arrows indicate packets in transit
(leading to a bandwidth related cost
proportional to β and the length of the packet)

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

Cost of minimum spanning tree
broadcast

log(p)⎡ ⎤ α + nβ()

number of steps cost per steps

167

Cost of minimum spanning tree
broadcast

log(p)⎡ ⎤ α + nβ()

number of steps cost per steps

Notice: attains lower bound for latency component

168

169
left right mid

me root
dest

170
left right mid

me root dest

mid left right

dest root

171
left right mid

me root dest

mid
left right

dest
root dest dest root root

mid mid
left left right right

172

+ + + + + + +

Reduce(-to-one)

Before After

+

173

174

175

176

177

178

179

180

181

182

Cost of minimum spanning tree
reduce(-to-one)

log(p)⎡ ⎤ α + nβ + nγ()

number of steps cost per steps

183

Cost of minimum spanning tree
reduce(-to-one)

log(p)⎡ ⎤ α + nβ + nγ()

number of steps cost per steps

Notice: attains lower bound for latency component

184

185

Scatter

Before After

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Cost of minimum spanning tree
scatter

α +
n
2k
β

⎛
⎝
⎜

⎞
⎠
⎟

k=1

log(p)
∑

=

log(p) α +
p − 1
p
nβ

• Assumption: power of two number of nodes

201

Cost of minimum spanning tree
scatter

α +
n
2k
β

⎛
⎝
⎜

⎞
⎠
⎟

k=1

log(p)
∑

=

log(p) α +
p − 1
p
nβ

• Assumption: power of two number of nodes

Notice: attains lower bound for latency and bandwidth
components

202

Gather

Before After

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

Cost of minimum spanning tree
gather

α +
n
2k
β

⎛
⎝
⎜

⎞
⎠
⎟

k=1

log(p)
∑

=

log(p) α +
p − 1
p
nβ

• Assumption: power of two number of nodes

218

Cost of minimum spanning tree
gather

α +
n
2k
β

⎛
⎝
⎜

⎞
⎠
⎟

k=1

log(p)
∑

=

log(p) α +
p − 1
p
nβ

• Assumption: power of two number of nodes

Notice: attains lower bound for latency and bandwidth
components

219

Using the building blocks

220

Allgather (short vector)

221

Gather

Allgather (short vector)

222

Broadcast

Allgather (short vector)

223

Cost of gather/broadcast
allgather

log(p)α +
p − 1
p
nβ

log(p)(α + nβ)

2log(p)α +
p − 1
p

+ log(p)
⎛

⎝
⎜

⎞

⎠
⎟ nβ

• Assumption: power of two number of nodes

gather

broadcast

224

Cost of gather/broadcast
allgather

log(p)α +
p − 1
p
nβ

log(p)(α + nβ)

2log(p)α +
p − 1
p

+ log(p)
⎛

⎝
⎜

⎞

⎠
⎟ nβ

• Assumption: power of two number of nodes

gather

broadcast

Notice: does not attain lower bound for latency or
 bandwidth components

225

Reduce-scatter
 (short vector)

226

Reduce(-to-one)

Reduce-scatter
 (short vector)

227

Scatter

Reduce-scatter
 (short vector)

228

Cost of Reduce(-to-one)/scatter
Reduce-scatter

log(p)(α + nβ + nγ)

log(p)α +
p − 1
p
nβ

2log(p)α +
p − 1
p

+ log(p)
⎛

⎝
⎜

⎞

⎠
⎟ nβ + log(p)nγ

• Assumption: power of two number of nodes

Reduce(-to-one)

scatter

229

Cost of Reduce(-to-one)/scatter
reduce-scatter

log(p)(α + nβ + nγ)

log(p)α +
p − 1
p
nβ

2log(p)α +
p − 1
p

+ log(p)
⎛

⎝
⎜

⎞

⎠
⎟ nβ + log(p)nγ

• Assumption: power of two number of nodes

Reduce(-to-one)

scatter

Notice: does not attain lower bound for latency or
 bandwidth components

230

Allreduce
 (short vector)

231

Reduce(-to-one)

Allreduce
 (short vector)

232

Broadcast

Allreduce
 (short vector)

233

Cost of reduce(-to-one)/broadcast
Allreduce

log(p)(α + nβ + nγ)
log(p)(α + nβ)

2log(p)α + 2log(p)nβ + log(p)nγ

• Assumption: power of two number of nodes

Reduce(-to-one)

broadcast

234

Cost of reduce(-to-one)/broadcast
Allreduce

log(p)(α + nβ + nγ)
log(p)(α + nβ)

2log(p)α + 2log(p)nβ + log(p)nγ

• Assumption: power of two number of nodes

Reduce(-to-one)

broadcast

Notice: does not attain lower bound for latency or
 bandwidth components

235

Recap
Reduce(-to-one)

 log(p)(α + nβ + nγ)

Scatter
 log(p)α + p−1
p
nβ

Broadcast
 log(p)(α + nβ)

Gather
 log(p)α + p−1
p
nβ

Allreduce

Reduce-scatter

Allgather

236

Recap
Reduce(-to-one)

 log(p)(α + nβ + nγ)

Scatter
 log(p)α + p−1
p
nβ

Broadcast
 log(p)(α + nβ)

Gather
 log(p)α + p−1
p
nβ

Allreduce

Reduce-scatter
 2log (p)α + log(p)n(β + γ) +

p−1
p
nβ

Allgather

237

Recap
Reduce(-to-one)

 log(p)(α + nβ + nγ)

Scatter
 log(p)α + p−1
p
nβ

Broadcast
 log(p)(α + nβ)

Gather
 log(p)α + p−1
p
nβ

Allreduce
 2log (p)α + log(p)n(2β + γ)

Reduce-scatter
 2log (p)α + log(p)n(β + γ) +

p−1
p
nβ

Allgather
 2log (p)α + log(p)nβ +

p−1
p
nβ

238

Recap
Reduce(-to-one)

 log(p)(α + nβ + nγ)

Scatter
 log(p)α + p−1
p
nβ

Broadcast
 log(p)(α + nβ)

Gather
 log(p)α + p−1
p
nβ

Allreduce
 2log (p)α + log(p)n(2β + γ)

Reduce-scatter
 2log (p)α + log(p)n(β + γ) +

p−1
p
nβ

Allgather

239

Recap
Reduce(-to-one)

 log(p)(α + nβ + nγ)

Scatter
 log(p)α + p−1
p
nβ

Broadcast
 log(p)(α + nβ)

Gather
 log(p)α + p−1
p
nβ

Allreduce
 2log (p)α + log(p)n(2β + γ)

Reduce-scatter
 2log (p)α + log(p)n(β + γ) +

p−1
p
nβ

Allgather
 2log (p)α + log(p)nβ +

p−1
p
nβ

240

A building block approach to
library implementation

•  Short vector case

• Long vector case

• Hybrid algorithms

241

Long vector case

•  Primary concern:
–  algorithms must have low cost due to vector length
–  algorithms must avoid network conflicts

•  Secondary concerns:
–  algorithms must work for arbitrary number of nodes

»  in particular, not just for power-of-two numbers of
nodes

242

Long vector building blocks

• We will show how the following building
blocks:
–  collect/distributed combine
–  scatter/gather

 can be implemented using “bucket” algorithms
while attaining
–  minimal cost due to length of vectors
–  implementation for arbitrary numbers of nodes
–  no network conflicts

• NOTICE: scatter and gather already satisfy
these conditions

243

General principles

• A logical ring can be embedded in a physical
linear array with worm-hole routing, since the
“wrap-around” message doesn’t conflict
–  This is used to “drop off” messages or to “pick up”

contributions

244

245

• A logical ring can be embedded in a physical
linear array with worm-hole routing, since the
“wrap-around” message doesn’t conflict

246

247

248

249

General principles

• Can be used to implement the following
building blocks:
–  collect
–  distributed combine

 using a bucket algorithm embedded in the
physical linear array while attaining
–  minimal cost due to vector length
–  implementation for arbitrary numbers of nodes
–  no network conflicts

250

Allgather

Before After

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Cost of bucket Allgather

(p − 1) α +
n
p
β

⎛

⎝
⎜

⎞

⎠
⎟

=

(p − 1)α +
p − 1
p
nβ

number of steps
cost per steps

270

Cost of bucket Allgather

(p − 1) α +
n
p
β

⎛

⎝
⎜

⎞

⎠
⎟

=

(p − 1)α +
p − 1
p
nβ

number of steps
cost per steps

Notice: attains lower bound for bandwidth component

271

+ + + + + + +

Reduce-scatter

Before After

+

272

273

274

+

+

+

+

+

+

+

+

+

275

276

+

+

+

+

+

+

+

+

+

277

278

+

+

+

+

+

+

+

+

+

279

280

+

+

+

+

+

+

+

+

+

281

282

+

+

+

+

+

+

+

+

+

283

284

+

+

+

+

+

+

+

+

+

285

286

+

+

+

+

+

+

+

+

+

287

288

+

+

+

+

+

+

+

+

+

289

290

Cost of bucket distributed
combine

(p − 1) α +
n
p
β +

n
p
β

⎛

⎝
⎜

⎞

⎠
⎟

=

(p − 1)α +
p − 1
p
nβ +

p− 1
p
nγ

number of steps cost per steps

291

Cost of bucket Reduce-scatter

(p − 1) α +
n
p
β +

n
p
β

⎛

⎝
⎜

⎞

⎠
⎟

=

(p − 1)α +
p − 1
p
nβ +

p− 1
p
nγ

number of steps cost per steps

Notice: attains lower bound for bandwidth and
computation component

γ

292

Scatter

Before After

Notice: Scatter as implemented before was optimal in
latency and bandwidth components

293

Gather

Before After

Notice: Gather as implemented before was optimal in
latency and bandwidth components

294

Using the building blocks

295

Broadcast (long vector)

296

Scatter

Broadcast (long vector)

297

Allgather

Broadcast (long vector)

298

Cost of scatter/allgather
broadcast

log(p)α +
p − 1
p
nβ

(p − 1)α + p − 1
p
nβ

(log(p) + p − 1)α + 2 p − 1
p
nβ

• Assumption: power of two number of nodes

scatter

allgather

299

Cost of scatter/allgather
broadcast

log(p)α +
p − 1
p
nβ

(p − 1)α + p − 1
p
nβ

(log(p) + p − 1)α + 2 p − 1
p
nβ

• Assumption: power of two number of nodes

scatter

allgather

Notice: attains within a factor of two of the lower
bound for bandwidth

300

Reduce(-to-one) (long vector)

301

Combine-to-one (long vector)

Reduce-scatter

302

Combine-to-one (long vector)

Gather

303

Cost of Reduce-scatter/Gather
Reduce(-to-one)

(p − 1)α + p − 1
p
nβ + p− 1

p
nγ

log(p)α + p− 1
p
nβ

(log(p) + p − 1)α + 2 p − 1
p
nβ + p− 1

p
nγ

• Assumption: power of two number of nodes

Reduce-scatter

gather

304

Cost of Reduce-scatter/Gather
Reduce(-to-one)

(p − 1)α + p − 1
p
nβ + p− 1

p
nγ

log(p)α + p− 1
p
nβ

(log(p) + p − 1)α + 2 p − 1
p
nβ + p− 1

p
nγ

• Assumption: power of two number of nodes

Reduce-scatter

gather

Notice: attains within a factor of two of the lower
bound for bandwidth and attains lower bound for
computation

305

Allreduce
 (long vector)

306

Reduce-scatter

Allreduce
 (long vector)

307

Allgather

Allreduce
 (long vector)

308

Cost of Reduce-scatter/Allgather
Allreduce

(p − 1)α + p − 1
p
nβ + p − 1

p
nγ

(p − 1)α +
p − 1
p
nβ

2(p − 1)α + 2 p − 1
p
nβ + p − 1

p
nγ

• Assumption: power of two number of nodes

Reduce-scatter

Allgather

309

Cost of Reduce-scatter/Allgather
Allreduce

(p − 1)α + p − 1
p
nβ + p − 1

p
nγ

(p − 1)α +
p − 1
p
nβ

2(p − 1)α + 2 p − 1
p
nβ + p − 1

p
nγ

• Assumption: power of two number of nodes

Reduce-scatter

Allgather

Notice: attains the lower bound for bandwidth and
computation

310

Recap
Reduce-scatter

 (p−1)α+ p−1
p
n(β+γ)

Scatter
 log(p)α + p−1
p
nβ

Allgather
 (p−1)α+ p−1
p
nβ

Gather
 log(p)α + p−1
p
nβ

Allreduce

Reduce(-to-one)

Broadcast

311

Recap
Reduce-scatter

 (p−1)α+ p−1
p
n(β+γ)

Scatter
 log(p)α + p−1
p
nβ

Allgather
 (p−1)α+ p−1
p
nβ

Gather
 log(p)α + p−1
p
nβ

Allreduce

Reduce(-to-one)
 (p − 1 + log (p))α +
p−1
p
n(2β + γ)

Broadcast

312

Recap
Reduce-scatter

 (p−1)α+ p−1
p
n(β+γ)

Scatter
 log(p)α + p−1
p
nβ

Allgather
 (p−1)α+ p−1
p
nβ

Gather
 log(p)α + p−1
p
nβ

Allreduce
 2(p − 1)α +
p−1
p
n(2β + γ)

Reduce(-to-one)
 (p − 1 + log (p))α +
p−1
p
n(2β + γ)

Broadcast
 (log (p) + p − 1)α + 2

p−1
p
nβ

313

Recap
Reduce-scatter

 (p−1)α+ p−1
p
n(β+γ)

Scatter
 log(p)α + p−1
p
nβ

Allgather
 (p−1)α+ p−1
p
nβ

Gather
 log(p)α + p−1
p
nβ

Allreduce
 2(p − 1)α +
p−1
p
n(2β + γ)

Reduce(-to-one)
 (p − 1 + log (p))α +
p−1
p
n(2β + γ)

Broadcast

314

Recap
Reduce-scatter

 (p−1)α+ p−1
p
n(β+γ)

Scatter
 log(p)α + p−1
p
nβ

Allgather
 (p−1)α+ p−1
p
nβ

Gather
 log(p)α + p−1
p
nβ

Allreduce
 2(p − 1)α +
p−1
p
n(2β + γ)

Reduce(-to-one)
 (p − 1 + log (p))α +
p−1
p
n(2β + γ)

Broadcast
 (log (p) + p − 1)α + 2

p−1
p
nβ

315

Advanced Techniques:

Taking advantage of higher
dimensions

316

Physical 2D meshes

•  Simple solution: embed logical linear array
–  problem: large p implies high latency for bucket algorithms

• Advanced solution: perform operation in each
dimension
–  collect:

collect within rows, followed by collect within columns
–  distributed combine:

same, in reverse

317

Example: 2D Allgather

318

Example: 2D Allgather

Allgather in rows

319

Example: 2D Collect

Allgather
 in columns

320

Cost of 2D Allgather

(c − 1)α + (c − 1) n
p
β

(r − 1)α + (r − 1) c
p
nβ

(r + c − 2)α + p − 1
p
nβ

row Allgather

column Allgather

latency term is
reduced

bandwidth term
 is unaffected

321

Example: 2D Scatter/Allgather
Broadcast

322

Example: 2D Scatter/Allgather
Broadcast

scatter in columns

323

Example: 2D Scatter/ Allgather
Broadcast

Scatter in rows

324

Example: 2D Scatter/ Allgather
Broadcast

Allgather in rows

325

Example: 2D Scatter/Collect
Broadcast

Allgather
 in columns

326

Cost of 2D scatter/Allgather
broadcast

(log(p) + r + c − 2)α + 2 p − 1
p
nβ

327

A building block approach to
library implementation

•  Short vector case

•  Long vector case

• Hybrid algorithms

328

Hybrid algorithms
(intermediate length case)

•  algorithms must balance latency, cost due to
vector length, and network conflicts

329

Example

• We will illustrate the techniques using the
broadcast as an example
–  short vector: minimum spanning tree broadcast

330

Example: 2D Broadcast

331

Example: 2D Broadcast

• Option 1:
–  MST broadcast in column
–  MST broadcast in rows

332

Example: 2D Broadcast

• Option 1:
–  MST broadcast in column

–  MST broadcast in rows

333

Example: 2D Broadcast

•  Option 2:
–  Scatter in column
–  MST broadcast in rows
–  Allgather in columns

334

Example: 2D Broadcast

•  Option 2:
–  Scatter in column
–  MST broadcast in rows
–  Allgather in columns

335

Example: 2D Broadcast

•  Option 2:
–  Scatter in column
–  MST broadcast in rows

–  Allgather in columns

336

Example: 2D Broadcast

•  Option 3:
–  Scatter in column
–  Scatter in rows
–  Allgather in rows
–  Allgather in columns

337

Example: 2D Broadcast

•  Option 3:
–  Scatter in column
–  Scatter in rows
–  Allgather in rows
–  Allgather in columns

338

Example: 2D Broadcast

•  Option 3:
–  Scatter in column
–  Scatter in rows

–  Allgather in rows
–  Allgather in columns

339

Example: 2D Broadcast

•  Option 3:
–  Scatter in column
–  Scatter in rows
–  Allgather in rows
–  Allgather in columns

340

Cost comparison

• Option 1:
–  MST broadcast in column
–  MST broadcast in rows

• Option 2:
–  Scatter in column
–  MST broadcast in rows
–  Allgather in columns

• Option 3:
–  Scatter in column
–  Scatter in rows
–  Allgather in rows
–  Allgather in columns

log(c)α + log(c)nβ
log(r)α + log(r)nβ
log(p)α + log(p)nβ

341

Cost comparison

• Option 1:
–  MST broadcast in column
–  MST broadcast in rows

• Option 2:
–  Scatter in column
–  MST broadcast in rows
–  Allgather in columns

• Option 3:
–  Scatter in column
–  Scatter in rows
–  Allgather in rows
–  Allgather in columns

log(c)α +
c− 1
c
nβ

log(r)α + log(r) n
c
β

(c− 1)α +
c − 1
c
nβ

log(p) + c − 1()α + 2c − 1+ log(r)
c

⎛
⎝
⎜

⎞
⎠
⎟ nβ

342

Cost comparison

• Option 1:
–  MST broadcast in column
–  MST broadcast in rows

• Option 2:
–  Scatter in column
–  MST broadcast in rows
–  Allgather in columns

• Option 3:
–  Scatter in column
–  Scatter in rows
–  Allgather in rows
–  Allgather in columns

log(c)α + c− 1
c
nβ

log(r)α +
r − 1
r
n
c
β

(r − 1)α + r − 1
r
n
c
β

(c − 1)α +
c − 1
c
nβ

(log(p) + r + c − 2)α + 2 p − 1
p
nβ

343

Cost comparison

• Option 1:
–  MST broadcast in column
–  MST broadcast in rows

• Option 2:
–  Scatter in column
–  MST broadcast in rows
–  Allgather in columns

• Option 3:
–  Scatter in column
–  Scatter in rows
–  Allgather in rows
–  Allgather in columns

log(p)α + log(p)nβ

log(p) + c − 1()α + 2
c − 1+ log(r)

c
⎛
⎝
⎜

⎞
⎠
⎟ nβ

(log(p) + r + c − 2)α + 2
p − 1
p
nβ

344

Higher dimensions

• This technique can be extended by viewing
one- and two-dimensional meshes logically as
higher dimensions
–  reduces latency
–  incurs network conflicts
–  can be used to create faster short vector implementations

• Details require more time that is available
today

345

Other techniques

•  Pipelined algorithms
–  can be used to further reduce the cost of broadcast and

combine-to-one for long vectors
–  very effective on hypercubes

»  (Ho and Johnsson)
–  effective on meshes with low latency

»  (Watts and van de Geijn)
–  complicated to implement, analyze and explain

346

Outline

Part I: Theory
• Model of computation
• Collective communications
• A building block approach to library

implementation

Part II: Practice
•  Implementation on the Paragon
•  Performance results
• Applications

347

Outline

Part I: Theory
• Model of computation
• Collective communications
• A building block approach to library

implementation

Part II: Practice
•  Implementation on the Paragon
•  Performance results
• Applications

348

Theory is nice, but how does it
work in practice?

•  Paragon does not match our model
–  Bad news:

»  sending and receiving more complex then the model
indicates

»  forced messages vs. unforced messages
»  preposted messages vs. nonpreposted messages
»  etc.

–  Good news:
»  excess bandwidth in the network

349

Interprocessor Collective
Communication

(InterCom)
Project

350

Implementation on the Paragon

•  Short vector building blocks
–  reduce latency by not preposting and synchronizing

•  Long vector building blocks
–  improve bandwidth by preposting and synchronizing

•  Incorporate more complex issues into model
–  various startups, bandwidths, depending on situation

• Use simple heuristic to choose hybrid strategy
–  because of excess bandwidth, the mesh acts more like a

hypercube, for which some solid theory exists
»  (van de Geijn)

–  details go beyond this tutorial.

351

Performance

352

Performance comparison

• NX collective communication
• Message Passing Interface (MPI)

–  Reference implementation from ANL and MSU
–  Bill Gropp, Rusty Lusk, and Tony Skjellum

• Basic Linear Algebra Communication
Subprograms (BLACS)
–  Communication library of ScaLAPACK
–  Reference implementation from the Univ. of TN
–  Jack Dongarra and Clint Whaley

•  Interprocessor Collective Communication (iCC)
Library
–  High performance implementation by the InterCom team

353

Broadcast on 16 x 32 mesh Paragon

0.0001

0.0010

0.0100

0.1000

1.0000

1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)

Ti
m

e
(s

ec
on

ds
)

BLACS
iCC
MPI
NX

NX

354

Broadcast on 16 x 32 mesh Paragon

0.0001

0.0010

0.0100

0.1000

1.0000

1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)

Ti
m

e
(s

ec
on

ds
)

BLACS
iCC
MPI
NX

MPI

355

Broadcast on 16 x 32 mesh Paragon

0.0001

0.0010

0.0100

0.1000

1.0000

1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)

Ti
m

e
(s

ec
on

ds
)

BLACS
iCC
MPI
NX

BLACS

356

Broadcast on 16 x 32 mesh Paragon

0.0001

0.0010

0.0100

0.1000

1.0000

1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)

Ti
m

e
(s

ec
on

ds
)

BLACS
iCC
MPI
NX

iCC

357

Broadcast on 16 x 32 mesh Paragon

0.00

0.10

0.20

0.30

0.40

0.50

0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06 1.2E+06

Message Length (bytes)

Ti
m

e
(s

ec
on

ds
)

BLACS
iCC
MPI
NX

358

Allgather on 16 x 32 mesh Paragon

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)

Ti
m

e
(s

ec
on

ds
)

BLACS
iCC
MPI
NX

NX

359

Allgather on 16 x 32 mesh Paragon

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)

Ti
m

e
(s

ec
on

ds
)

BLACS
iCC
MPI
NX

MPI

360

Allgather on 16 x 32 mesh Paragon

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)

Ti
m

e
(s

ec
on

ds
)

BLACS
iCC
MPI
NX

BLACS

361

Allgather on 16 x 32 mesh Paragon

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

1.0E+00 1.0E+02 1.0E+04 1.0E+06

Message Length (bytes)

Ti
m

e
(s

ec
on

ds
)

BLACS
iCC
MPI
NX

iCC

362

Allgather on 16 x 32 mesh Paragon

0.0

1.0

2.0

3.0

4.0

5.0

0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06 1.2E+06

Message Length (bytes)

Ti
m

e
(s

ec
on

ds
)

BLACS
iCC
MPI
NX

363

This PowerPoint presentation may be copied for
nonprofit educational purposes. Credit should be
given to the InterCom project.

For information, contact

rvdg@cs.utexas.edu

364

CollMark: Collective
Communicaton Benchmark

A look at the current state-of-the-art
(spring 2000)

365

How to measure the quality of an
implementation

• Architecture independent measure of the
quality of the implementation:

•  Ideally:

1
)(2

),(
⎯⎯ →⎯
∞→nnppT

pncommT
)(2

),(
nppT
pncommT

21
)(2

),(
or

nppT
pncommT

n
⎯⎯ →⎯
∞→

366

