TheBali Language

Jacob (“Jack”) Neal Sarvela

May 1, 2003

Abstract. Bali is an LL(k) grammar-specification language designed to produce parsers faHBAD

tool suite. Unlike traditional grammar specifications using, for exanmple/yacc or JavaCCpali sup-

ports composition of specifications so that sub-grammars can be shared and re-used. This document
describegali grammar specifications and it summarizes the construction of a parser rem apeci-

fication.

This is a preliminary version of this document that describes the new setfiaftools (yes, there was

an old set which is no longer being used). It is being merged with the older documentatiéown

to Write a Compiler UsingAHEADTooIs (seeHowTo.html), in Internal Representation of AHEAD Ab-
stract Syntax Trees/Parse Tre@geAST.html), and inAST CursorgseeAsT_Cursors.html), but the

merge isn't complete. For now, the reader should read all these documents. In addition, the new tool-
specific documentation fasali2jak (Seebali2jak.html), bali2javacc (Seebali2javacc.html)
andbalicomposer (Seebalicomposer.html) should be helpful.

Table of Contents

S [o To 0T T o 8 {21 P 2

82. Building and USING @ ParSer et e e e e e 3
2.1. Phase 1: GeneratinBali ParSer e e e e 3
2.2. Phase 2: Composing tABIEADTOOI LAYEISttt e e 5

2.3. Phase 3: Compiling the Generated SoUrce COUEoiiiiiiiii e

83.Bali Language ReferenCe e 6
3.1, The OPLIONS SECHONottt et e e e e e e e et e e 6
3.2. The Parser CoOe SECHIONottt et e e e e e e e e e e et
3.3 require StAEMENT . .. e e 7
3.4.Bali TOKeN DefiNitioNS e 7
3.5. Regular Expression Token Definitions o e e 7
3.6.Ball RUIBS .o i 8
3.7.JAVACODE ProdUCHIONSttt e e e e e e e e ettt e e e e e e 9
3.8. Token Manager DeClarationst e 9

84. TheBali Grammar fOIBallttt ittt et e e e et et e e e 9

Page 2 of 18 81 INTRODUCTION TGALI

1 Introduction to Bali

A Bali grammar specification combines modified(kl. BNF grammar rules with lexical definitions and embedded
Java code. Grammars writtengali are compositional — they may be composed to specify language combinations.
This section describes tiga1i language by using examples from thel 1 grammar, which itself is written ipali.

Bali Grammar Rules. We'll introduceBali with the first BNF rule in thesali grammar:
BaliGrammar : [Options] [ParserCode] [Statements] :: BaliGrammarNode ;

This rule, like all BNF rules irBali, is labeled with anon-terminal symbdiollowed by a colon (4”). In this case,

the label isBaliGrammar and, since this is the first BNF rule in the grammar, the |ahel Grammar is taken as the
start symbofor the grammar. Non-terminal symbols mustibentifiersand, by convention, they are writtenrimxed

casewith the beginning of each word capitalized (aRascal cas®r studly caps

After a rule’s label, there is a set of one or mg@meductionsseparated by a vertical bar|() and terminated by a
semi-colon (}"). Here,BaliGrammar has only one production as shown below:

[Options] [ParserCode] [Statements] :: BaliGrammarNode

The final phrase of this production is ¥ BaliGrammarNode”. The double-colon (¥ :”) denotes anamed production
where the name iBaliGrammarNode, the identifier following the double-colon. This name is used aslhgs name
for a sub-parse matching the syntactic elements specified in the production.

The production itself is a sequence of three symbolstions, ParserCode and Statements. Each symbol is
optional as is denoted by the brackets)(*) surrounding each symbol. Semantically, this single rule also defines the
outlineof aBali grammar specification. Aali grammar begins with an optionaptionssection. That is followed

by an optionaparser codesection. The last section, also optional, is stetementsection.

The meat of @ali grammar is in the statements section which is defined imshé language as follows:

Statements : (Statement)+ ;

Statement : RequireStatement
BaliGrammarRule
BaliTokenDefinition

RegexTokenDefinition

|

|

| JavacodeProduction

|

| TokenManagerDeclarations

This example shows two more BNF rules nanmdtements and Statement, respectively. The first of these,
Statements, again has only one production and, this time, the productionsisngle listof statement elements.

A simple list is always indicated by parentheses) () surrounding a symbol, followed by a plus sign+{}. During

parsing, a simple list matches one or more sub-parses matching the enclosed symbol. In this example, a parse of
Statements matches one or moigatement parses.

§2 BUILDING AND USING A PARSER Page 3 of 18

The statement rule, on the other hand, consists of six productions, each of which has exactly one non-terminal
symbol. DuringBali’s early history, such productions were call@shamed productionar, less accuratelynnamed

rules It's better to call thensub-productionbecause the symbol in the production body names a sub-type of the rule.
For example, &equireStatement is a sub-type oftatement which means that any occurrence of a parse matching
aRequireStatement can be used as a parse that matches ement.

Semantically, these two rules mean that the statements sectiopaafiagrammar, if present, must contain one or
more statements and each statement canregure statementa Bali grammar rule aBali token definitiona
Java code productigraregular-expression token definitiam atoken manager declaration

Summary. So far, we've seen three examplessafii grammar rulespaliGrammar, Statements andStatement.
More detailed information about tle 1i grammar is provided in thea 11 language reference (83, p. 6). First, though,
we’'ll describe how a parser can be built from a sesafi grammar specifications and, in the process, we’'ll see some
other aspects afali grammars.

2 Building and Using a Parser

A Bali parser is generated from onerarl i grammar specifications and the resulting parser is usually integrated into

an AHEADtool such as a translator. Figure 1 shows the three phases to constructing AtldeADtool. The first

phase uses the toalslicomposer, bali2jak andbali2javacc to generate source code for theli parser. The

outputs of phase one argarse-tree layein Jak source code andlavaCC parserPhase two composes the generated
parse-tree layer with the other layers of idEADtool This step is the same as the composition of hand-written Jak

layers and it generates a complete composition of Jak source code. Finally, phase three translates the generated source
code into, ultimately, Javaclass files.

2.1 Phase 1. Generating 8ali Parser

This phase generatessali parser from a set dfali grammar specifications. For example, suppose there are two
Bali grammar specifications. The firstiafix.b, which specifies the grammar for infix expressions such as those
used in languages like and Java. Let's suppose thatpression is the primary non-terminal symbol imfix.b

Generating Bali Parser Compiling to .class Files

Grammars /~—__

bali2javacc »(javacc2java

Figure 1:Constructing altAHEADTool that Uses 8ali Parser. Three phases of construction are shown: (1) Gen-
erating theali parser; (2) Compose theHEADtool layers with thesali parse-tree layer; and (3) Compiling the
generated source code tolass files.

Page 4 of 18 §2 BUILDING AND USING A PARSER

and that it also contains secondary non-terminals sueh@s:anExpression. The second grammar specification is
statement .b which specifies the grammar of imperative programming statements suchcasn-else andwhile-

do. Such statements are typically defined to use the values of boolean expressions for conditional tests, so it's natural
that these two grammar specifications should be composed to yield a complete specification of statements. Here's a
partial definition ofstatement .b:

require BooleanExpression ;

Statement = IfStatement | WhileStatement | ... ;
IfStatement = "if" " (" BooleanExpression ")" "then" ... ;
WhileStatement = "while" " (" BooleanExpression ")" "do" ... ;

The first line of this example isBali require statementt specifies a non-terminal symbol that is defined externally
in another grammar specification. In this case, the non-termireldseanExpression which is referenced in the
definitions of IfStatement andihileStatement. Wheninfix.b is composed withstatement.b, the result is

a grammar specification that defines an infix formgobleanExpression. The composition is achieved with the
composer tool as follows:

composer --target=grammar.b infix.b statement.b

Thecomposer recognizes theb file extension and invokes the1icomposer tool to perform the composition. If
preferred, the user can invokelicomposer directly:

balicomposer -output grammar.b infix.b statement.Db
In these examples, the order of the composition is important since the definition BfanExpression must occur

before its first use in a require statement.

Now, suppose that another syntax was desiredfonecanExpression andExpression. If a functional syntactic
form was defined ifunctional . b, then this form could be composed withat ement . b using either of the following
two commands:

composer --target=grammar.b functional.b statement.b
balicomposer -output grammar.b functional.b statement.b
Again, the order of composition is important.

Generating the parse-tree layerGiven the composed grammargnammar . b, thebali2 jak tool is used to produce
a directory hierarchyof Jak source files, each containing a class definition of a parse-tree node. Here's how the
bali2jak command is used:

bali2jak grammar.b -directory dsl/tool/parse-tree

This example places the generated parse-tree nodes into a directory deiniecol /parse-tree.l By default, the
name of the generated layer is the same as the base name of the destination directory, but this can be overridden by
specifying a value to the optional ayer option of thebali2jak command.

For a specification of the generated parse-tree nodes, please refebta theak document

1This example uses UNIX-style file names. On Windows systems, a Windows-style file name should be used instead.
2Fix this: Refers tdali2jak document, so write one.

§2 BUILDING AND USING A PARSER Page 5 of 18

Generating the JavaCC parser.The next and final step in generatingal i parser is to generate a JavaQgrser
that drives the generation ofmali parse tree. Here’s how the1i2javacc command can be invoked to use the
grammar.b file as input:

bali2javacc grammar.b -output grammar.jj -package parser

The output of this step is a single file (namgthmmar. 7 in this example) containing a JavaCC parser. By default,
the parser is placed into Java’'s default package, but this can be overridden by specifying a walle tavacc’s
-package option.

2.2 Phase 2: Composing thAHEADTool Layers

Given the generated layes1/tool/parse-tree from §2.1, this phase composes that layer with the additional layers
that define theAHEADtool being built. Typically, the additional layers define parse-tree processing methods and
semantic analysis as well as a driver such as i program. Collectively, we'll call these theol layers We'll
suppose, for example, that the there are two tool layers nasied ool /semantics anddsl/tool/driver.

In addition to the parse-tree layer and the tool layers, it's also necessary to indtadeealayerthat defines the base
classes for the parse-tree layer. All in all, the layers to be composed are:

ASL/KEINEL ottt standard kernel layer defined AHEAD
dS1/t00]/PATSE=—ErEE «t vttt ettt e generated parse-tree layer
dsl/to0l/SemantiCs .uuuurrreiiieneeenniiiiaa semantic refinements to parse-tree nodes
dsl/tool/driver ... driver program with argument processing, etc.

These layers form thequationto be composed. There are some order dependencies in this equation. For example,
the parse-tree layer, by construction, refines the kernel layer so it must come after the kernel layer. Typically, the
semantics layer refines the parse-tree layer, so that comes next. On the other hand, a driver layer can be written to be
independent of the other layers by, e.g., using reflection but, for this example, we assume that the driver layer refines
the semantics layer. Given these order dependencies, an equations file defining the tool can be created to contain the
following single line:

this = dsl/kernel dsl/tool/parse-tree dsl/tool/semantics dsl/tool/driver

Supposing that the equations file is named1 . equations, the tool can be composed with the followiogmposer
command:

composer --equation=tool.equations

By default, thecomposer writes the resulting source code into a directory named with the base name of the equations
file, tool in this case. To specify an alternative destination,dbeposer 's --target option could be specified.
Refer to thecomposer document for more detafl.

SFix this: Reference JavaCC documentation.
4Fix this: Include reference toomposer document.

Page 6 of 18 83 BALI LANGUAGE REFERENCE

2.3 Phase 3. Compiling the Generated Source Code

Finally, the generated code in theol directory can be compiled. Here, the Jak source code and the JavaCC parser
must first be translated to Java. This can be accomplished with the following command sequence, again using Unix-
style syntax:

cd tool
jak2java *.jak
javacc ../grammar.jj

The resulting Java code can then be compiled to class files by using a standard Java compiler.

3 Bali Language Reference

In 81, some of the basic elements of&l 1 grammar were introduced, but more complex partsaafi was not de-
scribed. This section summarizes all major parts®f ai grammar. Some parts ofzali grammar are taken directly
from JavaC€ grammars and those parts will be described by reference to the Web-based JavaCC documentation.

Whitespace and comments.The Bali lexical analyzer will scan and ignore any unquoted whitespace, including
spaces, tabs, linefeeds and carriage returns. Furtkstyle andc++-style comments can appear anywhere that a
whitespace character can appe&astyle comments begin with & and continue until a closing/ is encountered. On
the other hand;++-style comments begin with & and continue only to the next end-of-line.

3.1 The Options Section

The options section is the first non-comment region Beai grammar. It begins withdptions {”, it ends with
“} options” and it can include any JavaCaption bindingas defined in the JavaCC documentatiotcp: / /www.
experimentalstuff.com/Technologies/JavaCC/javaccgrm.htmlfprod6).

3.2 The Parser Code Section

The parser code section is a block of Java code, quoted withife" {” and “} code” delimiters, that follows the
options section. The entire block, whitespace and all, is placed verbatim into the parser class generated by JavaCC.
When building a JavaCC parser by wayrafl i, the parser class is always nanszd iParser.

Shttp://www.experimentalstuff.com/Technologies/JavaCC/

83 BALI LANGUAGE REFERENCE Page 7 of 18

3.3 require Statement

One example of aequire statement occurred in 82.1. These statements are used to specify non-terminal symbols
that are defined externally to the currentli grammar specification. The general syntax afeguire statement,
written inBali, is as follows:

RequireStatement : "require" RequireRules ";" ;
RequireRules : RequireRule ("," RequireRule)* ;
RequireRule : IDENTIFIER [RequireType] ;
RequireType : "->" IDENTIFIER ;

The keywordrequire can be followed by one or more symbol specifications which are separated by a copima (“

Each symbol specification is a non-terminal symbol, optionally followed by a type name. The type hame may be the
name of any valid syntax-tree class and, when not present, it defaults to the class that corresponds to the non-terminal
symbol itself.

3.4 Bali Token Definitions

There are two types of token definitionsBali grammars. The simplest type is most suitable for constant tokens
such as keywords and punctuation characters. Here are a few exampies ¢dken definitions:

" OPENANGLE
" CLOSEANGLE
" OPENPAREN
mn CLOSEPAREN
"code" CODE
"options" OPTIONS

For eactBali token, the constant string value of the token is first given as a quoted string and that is followed by the
token name. Once a token name is defined in this way, it may be used as a terminal symbatdnianye. By
convention, token names are always upper-case identifiers.

3.5 Regular Expression Token Definitions

More complex token definitions are defined by using regular expressions. Such definitions are exactly the same as
JavaCQegular expression productionghich are described attp: //www.experimentalstuff.com/Technologies/
JavaCC/javaccgrm.html\#prod10. Examples can be found in tBa1i grammar foBali in §4.

Page 8 of 18 83 BALI LANGUAGE REFERENCE

3.6 Bali Rules

Bali grammar rules were introduced in 81 and we won't repeat everything from the introduction. Here, we briefly
describe the four types of productions that can be included in a rule: (1) Named productions; (2) Sub-productions;
(3) Simple lists; and (4) Complex lists. In this versiongsafl i, using some production types places a restriction on
Bali rules and these restrictions are noted in longer descriptions below.

Generally, a production is defined in terms ofpoimitive tokens These can be terminal symbols, non-terminal sym-
bols or quoted strings. Primitives may bgtional in which case they are surrounded by bracket$’(f. Any produc-

tion can also begin with an optionklokahead clauses specified by JavaC& tp://www.experimentalstuff.
com/Technologies/JavaCC/javaccgrm.html#prod21. Depending on the type of production, other elements may
also be present.

Named productions. A named production is any arbitrary sequence of primitives followed by a double-calef) (*
and a name. Angali grammar rule can have an arbitrary number of named productions. Here’s an example of a
single named production within a rule:

StateSet : "<" States ">" :: StatesNode ;

The name is used as the name of a generated class representing a parse-tree node matching the production.
Sub-productions. A sub-production has exactly one non-terminal symbol and a rule can have any number of sub-
productions. Two sub-productions are shown in the rule below:

Statement : IfStatement | WhileStatement ;
This specifies that non-terminal$statement andithileStatement are sub-types of non-termingtatement. This
is reflected in the inheritance hierarchy generateddiy 2 jak.

Simple lists. List productions inBali currently are used to define several different parse-tree classes in their own
inheritance hierarchy. As a result, if a list production occurs Beai grammar rule, the rule must hawe other
productions A simple list has the followin@ali grammar specification:

SimpleList : " (" [Lookahead] Primitive ")" "+" ;

whereLookahead represents a lookahead clause anthitive represents any primitive element as described above.
The semantic meaning of a simple list is as a whitespace-separated sequence of one or matches of the primitive
element.

Complex lists. Complex list productions suffer from the same restriction as simple list productionsat+ grammar
rule that contains a complex list production can contain no other productions. However, complex lists do allow a
slightly more general type of list as specified in #zg 1 grammar rule below:

ComplexList : Primitive " (" [Lookahead] Primitive Primitive ")" "*" ;

The purpose of complex lists is to specify a sequence of parse elements with an arbitrary separator. For example, it's
typical to parse function arguments as a comma-separated list of expressions. The example below shows a complex
list production for function arguments:

Arguments : Argument ("," Argument)+ ;

However, the definition ofomplexList previous allows more general lists, including lists where the separator is
specified by a non-terminal symbol.

84 THEBALI GRAMMAR FORBALI Page 9 of 18

3.7 JAVACODFMProductions

A JAVACODE production is another statement type taken from JavaCC. They begin with the keyavarehpr preced-

ing a Java method definition. The accompanying Java method is copied verbatim into the generated JavaCC parser. De-
tailed documentation is available &ttp: //www.experimentalstuff.com/Technologies/JavaCC/javaccgrm.
html#prod9.

3.8 Token Manager Declarations

The last statement type specifieken manager declarationshich are copied verbatim into the lexical analyzer gen-
erated by JavaCC. Detailed documentation is availableat: //www.experimentalstuff.com/Technologies/
JavaCC/javaccgrm.html#TOKEN_MGR_DECLS.

4 TheBali Grammar for Bali

This section contains the complete grammar forsthei language as specified in theli language itself. This is the
composedali specification used in the actual build process.

// Automatically generated Bali code. Edit at your own risk!
// Generated by "balicomposer" v2003.02.17.

/] === //
// Option block:
/] //
options {

CACHE_TOKENS = true ;
JAVA_UNICODE_ESCAPE = true ;
OPTIMIZE_TOKEN_MANAGER = true ;
STATIC = false ;

} options
T //
// Parser code block:

[/ == //
code {

//***

// Code inserted from "bali.b" source grammar:
//***‘k*****‘k**********************************‘k****************************

/~k~k
* Append the given {@link Token} and any preceding special tokens to a

Page 10 of 18 84 THEALI GRAMMAR FORBALI

* given {@link StringBuffer}.
*

* @param token the given JavaCC {@link Token} object
* @param buffer the buffer to which to append <code>token</code>
**/

final private static void accumulate (Token token, StringBuffer buffer) {

// Append preceding special tokens to <code>buffer</code>:

//
Token special = firstSpecial (token) ;
if (special !'= token)

while (special !'= null) {
buffer.append (special.toString ()) ;
special = special.next ;

// Finally, append the token itself:
//
buffer.append (token.toString ()) ;

* Accumulate {@list Token} objects from the token stream, respecting

* nested code inside <code>open</code> and <code>close</code> pairs,

* until an unmatched <code>close</code> is the next token in the stream.
* This method assumes that an <code>open</code> token has just been read
* from the stream so the initial nesting level is 1. The method returns
* when a matching <code>close</code> token is the next token in the token
* stream. The <code>close</code> token is left in the stream!

* @return the accumulated tokens as a {@link String}.

* @throws ParseException
* if an end-of-file is found before an unmatched <code>close</code> token.
**/

final private Token accumulateNestedRegion (int open, int close)

throws ParseException {

StringBuffer buffer = new StringBuffer () ;

// Initialize result with known information (starting position, etc.):
//

Token result = Token.newToken (OTHER) ;

result.specialToken = null ;

Token startToken = firstSpecial (getToken (1)) ;
result.beginColumn = startToken.beginColumn ;

84 THEBALI GRAMMAR FORBALI Page 11 of 18

result.beginlLine = startToken.beginLine ;

// Accumulate tokens until a <code>close</code> token is found:
//

for (int nesting = 1 ; nesting > 0 ;) {
token = getToken (1) ;

// Update information in result:

//

result.endColumn = token.endColumn ;
result.endLine = token.endLine ;
result.next = token.next ;

if (token.kind == EOF)
throw new ParseException (
"accumulating from line "

+ result.beginLine
+ " at column "
+ result.beginColumn
+ ": EOF reached before ending "
+ tokenImage [close]
+ " found"
)
if (token.kind == open)
++ nesting ;
else if (token.kind == close) {
if (nesting == 1)
break ;
-- nesting ;

accumulate (token, buffer) ;
getNextToken () ;

result.image = buffer.toString () ;
return result ;

/**
* Accumulate {@link Token} objects from the token stream until a token
* matching <code>tokenKind</code> is consumed from the stream. The
* tokens are accumulated in <code>buffer</code>, including the terminating
* token.

Page 12 of 18 84 THEALI GRAMMAR FORBALI

* @return a {@link Token}
* formed by concatenating all intervening tokens and special tokens.
‘k‘k/

final private Token accumulateUntilToken (int tokenKind)

throws ParseException {

StringBuffer buffer = new StringBuffer () ;
Token token = getNextToken () ;

// Initialize result with known information (starting position, etc.):
//

Token result = Token.newToken (OTHER) ;

result.specialToken = null ;

Token startToken = firstSpecial (token) ;
result.beginColumn = startToken.beginColumn ;
result.beginlLine = startToken.beginLine ;

// Accumulate tokens until a <code>tokenKind</code> token is found:

//
while (token.kind != tokenKind) {

// Update information in result:

//

result.endColumn = token.endColumn ;
result.endlLine = token.endLine ;
result.next = token.next ;

if (token.kind == EOF)

throw new ParseException (

"from line "

result.beginline
" at column "
result.beginColumn
": EOF reached before "
tokenImage [tokenKind]
" found"

+ + + + + +

accumulate (token, buffer) ;
token = getNextToken () ;
accumulate (token, buffer) ;

result.image = buffer.toString () ;
return result ;

84 THEBALI GRAMMAR FORBALI Page 13 of 18

* Finds the first token, special or otherwise, in the list of special
* tokens preceding this {@link Token}. 1If this list is non-empty, the
* result will be a special token. Otherwise, it will be the starting
* token.

* @param token the given {@link Token}.
* @Qreturn the first special token preceding <code>token</code>.
**/

final private static Token firstSpecial (Token token) {

while (token.specialToken != null)
token = token.specialToken ;

return token ;

} code

[[= mm //
// Token manager declarations:
[//

/[mmmmm //
// Bali tokens:

[mmmm //
" CLOSEANGLE

mn CLOSEPAREN

" LBRACE

" OPENANGLE

" OPENPAREN

" RBRACE

"code" _CODE

"EOF" _EOF
"IGNORE_CASE" _IGNORE_CASE
"JAVACODE" _JAVACODE
"LOOKAHEAD" _ LOOKAHEAD
"MORE" _MORE

"options" _OPTIONS
"PARSER_BEGIN" _PARSER_BEGIN
"PARSER_END" _PARSER_END
"require" _REQUIRE

"SKIP" _SKIP

Page 14 of 18 84 THEALI GRAMMAR FORBALI

"SPECIAL_TOKEN" _SPECIAL_TOKEN
"TOKEN" _TOKEN
"TOKEN_MGR_DECLS" _TOKEN_MGR_DECLS
[/ //
// Reqular expression tokens:

[/ == //
TOKEN: {

<BALI_TOKEN: <UPPERCASE> (<UPPERCASE> | <DIGIT>)*>
<#UPPERCASE: ["A"-"g", " " wgn]> |

<STRING:
ll\ll"
T\, AT, MR,)
|
(["n", "£", MpT, Tpr, MEN, MY, e
I [“O"_"7“} (["0"_"7"1)?
| ["0"="3") [MO"="TN] [MO"-"7"]
)
)
)*
"\""
> |

<INTEGER: (<DIGIT>)+>

[= /]
// Java code blocks:
[} mmmm //
JAVACODE
CodeBlockNode codeBlockNode (Token token) {
return (new CodeBlockNode ()) . setParms (t2at (token)) ;
}
JAVACODE

CodeBlockNode findBlockBegin () {
return codeBlockNode (accumulateUntilToken (LBRACE)) ;

JAVACODE
CodeBlockNode findBlockEnd () {
return codeBlockNode (accumulateNestedRegion (LBRACE, RBRACE)) ;

84 THEBALI GRAMMAR FORBALI Page 15 of 18

JAVACODE
CodeBlockNode findCloseAngle () {
return codeBlockNode (accumulateNestedRegion (OPENANGLE, CLOSEANGLE)) ;

JAVACODE
CodeBlockNode findCloseParen () {
return codeBlockNode (accumulateNestedRegion (OPENPAREN, CLOSEPAREN)) ;

[/ //
// Bali productions:
e //

require findBlockBegin -> CodeBlockNode ;
require findBlockEnd -> CodeBlockNode ;

require findCloseAngle —> CodeBlockNode ;
require findCloseParen -> CodeBlockNode ;

BaliParse
[Options] [ParserCode] [Statements] :: BaliParseNode
2
AngleRegex
LOOKAHEAD (2) BALI_TOKEN ">" :: BaliRegexNode
| LOOKAHEAD (2) [Label] ComplexRegex :: ComplexRegexNode
2
BaliGrammarRule
IDENTIFIER ":" Productions ";" :: BaliGrammarNode
’
BaliTokenDefinition
STRING BALI_TOKEN :: BaliTokenDefineNode
’
Block
: "{" findBlockEnd "}" :: BlockNode
7
CaseFlag
"[" _IGNORE_CASE "]" :: CaseFlagNode
2
ClassName

".:" IDENTIFIER :: ClassNameNode

Page 16 of 18 84 THEALI GRAMMAR FORBALI

ComplexRegex
LOOKAHEAD (2) STRING ">" :: StringComplexNode
| findCloseAngle ">" :: AngleComplexNode
i
JavacodeProduction
: _JAVACODE ScanBlock :: JavacodeNode
7
Label
["#"] BALI_TOKEN ":" :: LabelNode
7
Lookahead
: _LOOKAHEAD " (" findCloseParen ")" :: LookaheadNode
NextState
: ":" BALI_TOKEN :: NextStateNode
i
Options
: _OPTIONS Block _OPTIONS :: OptionsNode
7
ParserCode
: _CODE Block _CODE :: ParserCodeNode
7
Pattern

(Primitive) +

Primitive
"[" [Lookahead] Terminal "]" :: OptionalNode
| Terminal
’
PrimitiveRewrite
"(" [Lookahead] Primitive Primitive ")" "x" :: ComplexListNode
| [Pattern] [ClassName] :: PatternNode
i
Production

[Lookahead] Rewrite :: ProductionNode

84 THEBALI GRAMMAR FORBALI

Page 17 of 18

Productions
: Production
7
REKind
: _TOKEN
| _SPECIAL_TOKEN
| _SKIP
| _MORE
7
REList
: RegexBlock
7
Regex
STRING

"<" AngleRegex

RegexBlock
: Regex [Block] [NextState]

RegexTokenDefinition
[StateSet] REKind [CaseFlag]

RequireRule
IDENTIFIER [RequireType]

RequireRules
: RequireRule ("," RequireRule)*

RequireStatement
: _REQUIRE RequireRules ";"

RequireType

Rewrite

"->" IDENTIFIER

"("

[Lookahead]

("|™ Production)*

("|" RegexBlock) *

Primitive ")"

:" "{" REList "}"
: RegexDefinitionNode

"+"

:: TokenKindNode

SpecialKindNode
SkipKindNode

:: MoreKindNode

StringRegexNode

: AngleRegexNode

:: RegexBlockNode

:: RequireRuleNode

:: RequireStatementNode

:: RequireTypeNode

SimpleListNode

Page 18 of 18

84 THEALI GRAMMAR FORBALI

| Primitive PrimitiveRewrite

ScanBlock
findBlockBegin findBlockEnd "}"

StateName
BALI_TOKEN
’
StateSet
"<" StatesSpecifier ">"
7
Statement
RequireStatement
BaliGrammarRule
BaliTokenDefinition

RegexTokenDefinition

|

|

| JavacodeProduction

|

| TokenManagerDeclarations

Statements
(Statement) +

StatesList
StateName ("," StateName) *

StatesSpecifier
. m%n
| StatesList
’

Terminal

BALI_TOKEN

| IDENTIFIER
| STRING

r

TokenManagerDeclarations
: _TOKEN_MGR_DECLS ":" ScanBlock

:: PrimitiveRewriteNode

ScanBlockNode

StateNameNode

StatesNode

StarStatesNode
ListStatesNode

:: BaliTokenNode

IdentifierNode
StringNode

TokenManagerNode

