
Lecture 10 Notes ​ - Wednesday 10/26/16

Reading Quiz

Question 1: Ans = C
Question 2: Ans = D
Question 3: Ans = C
Question 4: Ans = D
Question 5: Ans = B

Notes

COUNT​ :​ count(*) includes nulls

count(​column_name​) does not include nulls

count(​distinct column_name​) doesn’t include nulls

Concept Question 1: . ​A​ is just going to give us the number of non-null entries in the ​Department

column, 6, which isn’t what we want. ​B ​ doesn’t really make sense here because you can’t sum up

VARCHARs / the names of departments. ​C​ gives you the total number of rows, regardless of

Department​ , 8, which isn’t what we want. ​D​ gives us the number of different departments, 2, which is

what we want. Note that ​D​ doesn’t count the null entries in ​Department​ .

GROUP BY ​ Examples:

When we do a ​group-by​ on a ​join​, we need to be mindful of the “empty group” problem. The empty

group problem happens when we lose a group from the result set due to the results of the inner join.

It’s important to remember that the join is performed prior to the group-by. In the example, we lose

the “Dallas” group because no Dallas-based customers placed orders. In order to preserve the empty

groups (e.g. Dallas), we need to use a ​left outer join​. Also, note that the ​having​ clause is a filter on the

entire group (as opposed to the ​where​ clause which filters individual records).

Concept Question 2: A. ​A​ is good because it includes the “null departments” (since it has ​count(*)​). ​B

is not good because it doesn’t group the results -- it combines an aggregate with a non-aggregate,

Department​ with ​COUNT(*)​ which doesn’t make sense. (It will either give you a syntax error or some

nasty random results.) ​C ​ has the issue of mixing aggregates and non-aggregates, plus it doesn’t catch

the nulls. ​D ​ doesn’t grab the null departments.

Concept Question 3: B. ​We’re grouping by ​city​ in this query but in the ​select​ clause we want ​city​ ,

order_date​ and ​sum(total_amount)​ . But what are our groups going to look like? We’re aggregating

across multiple ​order_dates​ but we’re ​selecting​ ​order_date​ -- MySQL has no idea what to show you

here. Exactly which ​order_date​ should it show? Rule: Every non-aggregated field in the ​select​ clause

needs to show up in the ​group by​ clause. Since we aren’t doing this here, ​order_date​ causes trouble.

Note we could have done ​group by ​ c.city, o.order_date​ . That would work, because each unique

combination of ​city ​ and ​order_date​ would have its own group.

Concept Question 4: A. ​Since we want to check the completion of an entire test, over all its
steps, we want to group by ​test_name​ , not ​test_step​ , so this takes ​C ​ and ​D ​ out of the running.
For ​B​ , note that the ​where​ clause is applied first, to filter the data (this is just kind of a fact about
the order of evaluation for a query). But this means that ​B ​ is going to get rid of the null
completion dates before we even do any grouping. So ​B​ will just give us a table with the names
of both tests. ​A​ basically checks that for each ​test_name​ the amount of ​test_steps​ is the same
as the number of non-null ​completion_dates​ . This tells us whether the test is complete, which is
what we want, so ​A​ makes us happy.

