
CS 327E Lecture 11

Shirley Cohen

October 31, 2016

Happy Halloween!

Announcements

• Guest lecture next class

• Heads-up on Lab 3

• Only 4 more quizzes (including today’s)

Homework for Today

• Chapter 14 from the Learning SQL book

• Exercises at the end of Chapter 14

Question 1

What is a database view?

A. A mechanism for caching database files

B. A mechanism for querying database tables

C. A mechanism for doing bulk imports and exports

D. A web interface for running SQL queries

E. None of the above

Question 2

Creating a view is giving a name to a ___ statement:

A. INSERT

B. UPDATE

C. DELETE

D. SELECT

E. CREATE TABLE

Question 3

What is NOT a motivation for views?

A. Aggregation: to appear as though data is aggregated

B. Complexity: making multiple tables appear to be a simple

table
C. Security: to avoid having to reveal individual data rows

D. Space saving: to reduce the storage of database tables

Question 4
mysql> desc Customer;

+--------------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------------+------------------+------+-----+---------+----------------+

| cust_id | int(10) unsigned | NO | PRI | NULL | auto_increment |

| fed_id | varchar(12) | NO | | NULL | |

| cust_type_cd | enum('I','B') | NO | | NULL | |

+--------------+------------------+------+-----+---------+----------------+

Which of these views hides the fed_id field from the Customer table?

A. CREATE VIEW Customer_VW (cust_id, cust_type_cd) AS
SELECT cust_id, cust_type_cd
FROM Customer;

B. CREATE VIEW Customer_VW AS
SELECT cust_id, cust_type_cd
FROM Customer;

C. CREATE VIEW Customer_VW (cust_id, cust_type_cd) AS
SELECT c.cust_id, c.cust_type_cd
FROM Customer c;

D. CREATE VIEW Customer_VW (cust_num, cust_type) AS
SELECT cust_id, cust_type_cd
FROM Customer;

E. All of the above

Question 5

Is it possible to update the data through a view?

A. No, views are only designed to simplify a SELECT statement

B. No, views are statically-generated tables and do not update
C. Yes, with several restrictions on clauses and functions

D. Yes, all views are updatable and insertable

Views

• Views are like procedures in SQL

• They are defined by a SQL query

• They return a table of results from the SQL query

Example view:

Employee (ssn, first_name, last_name, role, title, salary)

CREATE VIEW SeniorStaff AS

SELECT ssn, first_name, last_name, role, title, salary

FROM Employee

WHERE title LIKE 'Senior%'

ORDER BY salary

SeniorStaff(ssn, first_name, last_name, title, salary) = virtual table

We can now use the SeniorStaff view as if it were a table

Concept Question 1

What fields and/or records do the following views hide?

Employee(ssn, first_name, last_name, role, title, salary)

A. SSN and salary details for all employees B. Salary details for executives

C. All employee records D. Executive employee records

E. A and D

CREATE VIEW All_Employee_View AS

SELECT first_name, last_name, role, title

FROM Employee

ORDER BY last_name, first_name

CREATE VIEW Manager_Employee_View AS

SELECT ssn, first_name, last_name, role, title, salary

FROM Employee

WHERE role <> 'Executive'

ORDER BY last_name, first_name

Demo

See code samples in Github

https://github.com/cs327e-fall2016/snippets/blob/master/create_views.sql

CREATE VIEW CustomerSales AS

SELECT o.customer_id, i.price

FROM Orders o, Items i

WHERE o.item_id = i.id

Query Modification

Orders(order_id, item_id, customer_id, quantity, store)

Items(id, item_name, price)

CustomerSales(customer_id, price) = virtual table

SELECT c.customer_id, c.price, o.store

FROM CustomerSales c, Orders o

WHERE c.customer_id = o.customer_id

AND c.price > 100

Query using the view:

Question: How will this query be computed?

Query Modification

SELECT c.customer_id, c.price, o.store

FROM CustomerSales c, Orders o

WHERE c.customer_id = o.customer_id

AND c.price > 100

Using the view:

SELECT c.customer_id, c.price, o.store

FROM (SELECT x.customer_id, y.price,

FROM Orders x, Items y

WHERE x.item_id = y.id) c, Orders o

WHERE c.customer_id = o.customer_id

AND c.price > 100

Modified query (at runtime):

Query Modification

SELECT o.customer_id, i.price, o.store

FROM Orders o, Items i

WHERE o.item_id = i.id

AND i.price > 100

Flattened query (at runtime):

Rewritten query (at runtime):

SELECT c.customer_id, c.price, o.store

FROM (SELECT x.customer_id, y.price,

FROM Orders x, Items y

WHERE x.item_id = y.id) c, Orders o

WHERE c.customer_id = o.customer_id

AND c.price > 100

CREATE VIEW CustomerSales AS

SELECT o.customer_id, o.store, i.price

FROM Orders o, Items i

WHERE o.item_id = i.id

Concept Question 2

Orders(order_id, item_id, customer_id, quantity, store)

Items(id, item_name, price)

CustomerSales(customer_id, store, price) = virtual table

SELECT customer_id

FROM CustomerSales

WHERE store = 'Texas Union'

Query using the View:

Question: Which base table(s) will be used to answer the above query?

A. Only Orders B. Only Items C. Orders and Items D. Orders or Items

Types of Views

• Virtual views:

– computed only on-demand

– always up-to-date

• Materialized views:

– pre-computed offline

– requires extra storage

– may be out-of-date with the base tables

Applications of Views

• Security

- controlled access to fields and records

• Logical Data Independence

• Query Optimizations

- vertical partitioning

- horizontal partitioning

- materialized views

CREATE VIEW StudentsView AS

SELECT s.eid, s.first_name, s.middle_initial,

s.last_name, p.photo, p.date_taken

FROM Student s, Photo p

WHERE s.eid = p.eid

Vertical Partitioning

Student(eid, first_name, middle_initial, last_name)

Photo(eid, photo, date_taken)

SELECT eid, first_name, middle_initial

FROM StudentsView

WHERE last_name = 'Chen'

Query using the View:

Concept Question 2: Which base table(s) will be used to answer this query?

A. Student B. Photo C. Student and Photo D. Student or Photo

CREATE VIEW StudentPhotosView AS

SELECT eid, photo, date_taken

FROM Photo_2015

UNION ALL

SELECT eid, photo, date_taken

FROM Photo_2016

Horizontal Partitioning
Student(eid, first_name, middle_initial, last_name)

Photo_2015(eid, photo, date_taken)

Photo_2016(eid, photo, date_taken)

SELECT s.eid, s.first_name, s.middle_initial, s.last_name,

p.photo, p.date_taken

FROM Student s, StudentPhotosView p

WHERE s.eid = p.eid

AND p.date_taken >= '2016-01-01'

Query using the View:

Concept Question 3: Which base table(s) will be used to answer this query?

A. Student B. Photo_2015 and Photo_2016

C. Student and Photo_2015 D. Student and Photo_2016 E. All base tables

