
1

CS 327E Lab 2: Data Load and Reporting Tables

Prerequisites:

1. Completed Lab 1.
2. Continuing to work with same partner or found new partner for Lab 2.
3. Performed updates to Lab 1 based on your graded rubric.
4. Created Postgres RDS instance.
5. Installed psql client locally [1].
6. Connect to Postgres RDS instance from psql.

Step 1. Create a new folder in your local git repository called lab2. All the work you will do for this lab

will go into this folder.

Step 2. Create a new database named imdb on your Postgres RDS instance. To create the database, run

the command from your psql client:

create database imdb;

Step 3. Write the DDL for the IMDB tables based on the ERD from Lab 1. If you have doubts about the

correctness of the ERD you submitted, please ask one of us to review it before proceeding with this step.

If you find any mistakes, please update the ERD with any corrections and commit the changes to your

lab1 folder.

Place all the create table statements in a file called create_base_tables.sql. Run and verify the

script and fix any issues as required.

Here are a few useful psql commands:

• \c imdb (to connect to the imdb database)

• \i create_base_tables.sql (to run the create table script)

• \dt (to see a list of tables in the database)

• drop database if exists imdb; (to drop the imdb database)

create database imdb; (re-create the imdb database)

Add the create_base_tables.sql script to your git repo. Remember that you can reference the

Instacart create table statements [3] which include various data types, primary keys, and foreign keys.

Step 4. Download the full IMDB dataset from this link: http://cs327e-fall2017-

imdb.s3.amazonaws.com/pg.zip and unzip the file. There should be 10 csv files in the dataset. You do

not need to add these files to your git repo.

Step 5. Write the required \copy commands to import the csv files into the appropriate database

tables. Each copy command imports the data from exactly one csv file. The copy command is

documented in the Postgres manual [4] and examples from the Instacart class demo are also available

for reference [5].

http://cs327e-fall2017-imdb.s3.amazonaws.com/pg.zip
http://cs327e-fall2017-imdb.s3.amazonaws.com/pg.zip

2

Place all the copy commands in a file called load_data.sql. Connect to the IMDB database and run

the script using the command: \i load_data.sql; Fix any syntax errors that occur and re-run the

script until it is error-free. Add the file to your git repo.

Step 6. Perform some simple verification checks of the imported data. Check the record count of each

table to ensure that it matches the output from the copy command. Check some sample values to

ensure that all the columns from the csv files were imported into their designated columns in the table.

If you notice an issue with the imported data, drop the table, re-create the table, and then re-load the

data into the new table.

Place the select statements used for these checks into a file named check_load.sql. Do not include

the output from each select statement, just the select statement that was run. Add the file to your git

repo.

Step 7. The IMDB leadership team would like to perform some analytics with your database. They want

to analyze how movie ratings have changed over time. They have settled on a simple rating system for

this analysis: appalling titles, average titles, and outstanding titles. Titles are considered appalling if

they have an average rating score of 2.0 or below. Titles are considered average if they have an average

rating score of 2.1 to 7.9. Titles are considered outstanding if they have an average rating score of 8.0 or

above.

The leadership team would like to know how many titles fall into the appalling, average, and

outstanding categories for each year. But they also want the option to examine the numbers by type of

title (movie, short, tvseries, etc.) and/or by genre(s) associated with the title. For example, how many

outstanding TV series were made in 2016 or how many appalling movie dramas are there in the whole

database?

Design a dimensional schema that meets these criteria. You should create a new self-contained diagram

for this schema that includes the appropriate fact and dimension tables. Create the diagram in

LucidChart and download it in png format, choosing the download option "Crop to Content” and naming

the file imdb_star.png. Create a data dictionary that explains the entities and important attributes that

are in diagram. The data dictionary should be in a text file named data_dictionary.txt. Add both the

diagram and data dictionary to your git repo.

Step 8. Find the Stache entry that you created for Lab 1. Update the entry to include the additional RDS

details:

{
 "aws-username": "shouldbeAdmin",
 "aws-password": "mypassword",
 "aws-console-link": "myconsolelink",
 "rds-endpoint-link": "myrdsendpoint_without_port_number",
 "rds-username": "shouldbeMaster",
 "rds-password": "myrdspassword"
}

Make sure to not include a port number with the RDS endpoint. We will assume the Postgres RDS
instance is running on the default port of 5432.

3

Step 9. Locate the commit id that you will be using for your team’s submission. This is a long 40-

character that shows up on your main Github repo page next to the heading "Latest commit" (e.g.

commit 6ca6f695bca36f7fc2c33485d1080ae30f8b9928). Locate the link to your team’s repo. This is the

URL to your private repo on Github (e.g. https://github.com/cs327e-fall2017/xyz.git where xyz is your

repo name). Go back to the Stache entry and locate the read-only API endpoint and read key. Replace

the commit id, repo link, API endpoint, and read key in the json string below with your own:

{
 "repository-link": "https://github.com/cs327e-fall2017/xyz.git",
 "commit-id": "6ca6f695bca36f7fc2c33485d1080ae30f8b9928",
 "stache-endpoint": "/api/v1/item/read/62021",
 "stache-read-key": "ec1f815a603234eb8c5e2c02b474839f0b6d3b9e76b103f1ab0463b655e6661b"
}

Create a file called submission.json that contains your modified json string.

Click on the Lab 2 Assignment in Canvas and upload submission.json. This submission is due by Friday,

10/06 at 11:59pm. If it's late, there will be a 10% grade reduction per late day. This late policy is also

documented in the syllabus. Note: there should be one submission per team.

References:

[1] Snippets wiki: https://github.com/cs327e-fall2017/snippets/wiki
[2] Grading Rubric: http://www.cs.utexas.edu/~scohen/projects/lab2-rubric.pdf
[3] Instacart create table statements: https://tinyurl.com/yd6ztaw3
[4] Copy command documentation: https://www.postgresql.org/docs/9.6/static/sql-copy.html
[5] Instacart copy commands: https://tinyurl.com/ycb7dr8y

https://github.com/cs327e-fall2017/xyz.git
https://github.com/cs327e-fall2017/xyz.git
https://github.com/cs327e-fall2017/snippets/wiki
http://www.cs.utexas.edu/~scohen/projects/lab2-rubric.pdf
https://tinyurl.com/yd6ztaw3
https://www.postgresql.org/docs/9.6/static/sql-copy.html
https://tinyurl.com/ycb7dr8y

