
1

CS 327E Final Project: Milestone 2

Prerequisites:

1. Completed Milestone 1.
2. Continuing to work with your partner.

Step 1. Download the movie_tags.py pyspark script from this link: https://github.com/cs327e-

fall2017/snippets/blob/master/movie_tags.py. This is the starter code for the Spark program you will

implement in this milestone. Open the program in a Python editor of your choice and read through the

code.

Step 2. Open a psql session and connect to your Postgres RDS. Create a new table Title_Tags in your

IMDB database. This table will store unique pairs of title_id, tag. The title_id represents the usual IMDB

title identifier and the tag is the label given to a movie by a user in the movielens dataset. The tag

column should be stored as a varchar(300) in the database. Create the primary key on this table, but do

not create a foreign key constraint yet as this will slow down the load for this table. Create the table and

copy the create table statement to a file named create_title_tags.sql. Add this file to your git repo.

Step 3. Open the tags.csv file from the movielens dataset. Familiarize yourself with the format of this
file. Implement a function for map() that takes as input a line from tags.csv, parses the movie_id and tag
elements, and outputs a movie_id, tag pair. Pass this function to map and save the output RDD as
rdd_tags.

Step 4. The mapped RDD contains duplicate movie_id, tag pairs. Remove all duplicates using the RDD
transformation distinct() and store the new RDD as rdd_distinct_tags. Refer to the Spark Programming
Guide for more details on the distinct() transformation [3].

Step 5. The code for parsing the links.csv file is identical to the previous milestone and is provided to

you as part of the starter code. It produces rdd_links which shares an element in common with

rdd_tags, namely movie_id. Join rdd_links with rdd_distinct_tags on movie_id to produce a joined RDD

rdd_joined. Refer to the Spark Programming Guide for details on how to join two RDDs [3].

Step 6. The joined RDD is now mapped with the user function add_imdb_id_prefix(). The mapped RDD

contains elements of imdb_id, tag pairs, where the imdb_id value now has the appropriate tt0* prefix

used by our IMDB database.

Step 7. In the save_to_db() function, perform a database insert for each element of the input list. The

insert should write the values to the new Title_Tags table.

https://github.com/cs327e-fall2017/snippets/blob/master/movie_tags.py
https://github.com/cs327e-fall2017/snippets/blob/master/movie_tags.py

2

Step 8. Create a new EMR cluster by cloning a previously terminated cluster. Configure the cluster and

copy your script to the master node. Run the Spark job and debug any errors encountered during

execution. For this step, you should follow the procedures in our Clone EMR cluster guide, Connect and

Configure EMR cluster guide, and Running Spark Scripts guide, all accessible from our Snippet Wiki [1].

Once you have verified the code, add your error-free movie_tags.py to your git repo.

Step 9. Connect to your IMDB database and find the number of records in the Title_Tags table. Copy

the SQL query and output into a text file. Save the text file as title_tags.out and add it to your git repo.

Step 10. There are some records in the Title_Tags table which don’t have an associated parent record in

the Title_Basics table. These records should be removed before creating a foreign key on the

Title_Tags.title_id column. Remove those records (188 total) with the following DELETE statement:

DELETE FROM Title_Tags WHERE title_id in

(

 SELECT distinct tt.title_id

 FROM title_tags tt LEFT OUTER JOIN title_basics tb

 ON tt.title_id = tb.title_id

 WHERE tb.title_id IS NULL

);

Now create the foreign key on Title_Tags.title_id. The foreign key should point to the title_id column of

its parent table. The ALTER TABLE command page [4] in the Postgres manual has an example on how to

add a foreign key constraint to an existing table. Copy the foreign key statement to a file named

alter_title_tags.sql. Add this file to your git repo.

Step 11. Write an aggregate query that accesses the new table in some interesting way and wrap this

query inside a view. This query should join Title_Tags with Title_Basics. Name this view v_title_tags. The

view should be virtual if it executes in under 10 seconds or materialized if it runs for 10 seconds or

longer. Create the view in your IMDB database and add the view definition to a file. Name the file

v_title_tags.sql and add it to your git repo.

Step 12. Create a QuickSight analysis that visualizes the output from your view. Create a dashboard for

the analysis and share it with the IAM admin user. Also, take a screenshot of the analysis and save it as a

png or jpg format. Add the screenshot to your git repo.

Step 13. Locate the commit id that you will be using for your submission. This is a long 40-character that

shows up on your main GitHub repo page next to the heading "Latest commit" (e.g. commit

6ca6f695bca36f7fc2c33485d1080ae30f8b9928). Locate the link to your GitHub repo (e.g.

https://github.com/cs327e-fall2017/xyz.git where xyz is your repo name). Go back to your existing

Stache entry and locate the read-only API endpoint and read key.

Replace the commit id, repo link, API endpoint, and read key in the json string below with your own:

3

{
 "repository-link": "https://github.com/cs327e-spring2017/xyz.git",
 "commit-id": "6ca6f695bca36f7fc2c33485d1080ae30f8b9928",
 "stache-endpoint": "/api/v1/item/read/61515",
 "stache-read-key": "b2eacb0387a919e33b27e7c03a6c5d84b71234795732be33eb28711ec16f0e21"
}

Create a submission.json file that contains your modified json string. Click on the Final Project Milestone

2 in Canvas and upload submission.json. Do not add submission.json to your git repo.

This submission is due by Friday, 11/10 at 11:59pm. If it's late, there will be a 10% grade reduction per

late day. This late policy is also documented in the syllabus.

Additional Notes:

• The EMR service is not covered by the free tier program and it costs ~$8/hour for a single-node

cluster on an m3.xlarge or m4.xlarge instance. These charges apply even when the cluster is sitting

idle and there is no option to stop or suspend the EMR cluster. You should therefore always

terminate your EMR cluster when it is not in use to avoid unnecessary charges. Follow the steps in

our EMR Cluster Termination guide to destroy your EMR cluster: https://github.com/cs327e-

fall2017/snippets/wiki/Terminating-EMR-cluster.

• You should perform the fixes to your code locally and not directly on the EMR master node. Each

time you make a change, use scp to transfer the new script to EMR and then re-run the Spark job. In

order to do this efficiently, you should have two terminal sessions open, one ssh session for running

the job and one scp session for transferring the file.

References and Additional Resources:

[1] Snippets Wiki: https://github.com/cs327e-fall2017/snippets/wiki
[2] Milestone 2 Grading Rubric: http://www.cs.utexas.edu/~scohen/projects/m2-rubric.pdf
[3] Spark Programming Guide: https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html
[4] Postgres ALTER TABLE command: https://www.postgresql.org/docs/9.6/static/sql-altertable.html

https://github.com/cs327e-fall2017/snippets/wiki/Terminating-EMR-cluster
https://github.com/cs327e-fall2017/snippets/wiki/Terminating-EMR-cluster
https://github.com/cs327e-fall2017/snippets/wiki
http://www.cs.utexas.edu/~scohen/projects/m2-rubric.pdf
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html
https://www.postgresql.org/docs/9.6/static/sql-altertable.html

