
1

CS 327E Final Project: Milestone 3

Prerequisites:

1. Completed Milestone 2.
2. Continuing to work with your partner.

Step 1. Download the-numbers dataset from this link: http://cs327e-fall2017-final-
project.s3.amazonaws.com/the-numbers-with-headers.zip. This dataset contains 36 files (a-z and 0-9).
Open a few files and become familiar with the structure of the dataset.

Step 2. Open a psql session and connect to your Postgres RDS. Create a new table Title_Financials in
your IMDB database. This table will store the budget and box office numbers for a given title. The title
should be stored as the usual title_id, representing the IMDB identifier for a title. The budget and box
office values should be stored as int types and named budget and box_office, respectively. Create the
primary key for this table, but do not create a foreign key constraint yet as this would slow down the
data load. Copy the create table statement to a file named create_title_financials.sql. Add this file to
your git repo.

Step 3. Download the starter code for this milestone from our snippets repo. The code is in a single file

movie_financials.py accessible from this link: https://github.com/cs327e-

fall2017/snippets/blob/master/movie_financials.py. Open the script in a Python editor of your choice

and read through the code.

Step 4. Implement the parse_line() function for map. The function takes as input a single line from the-
numbers files and parses the line as follows: extracts the year component from the Release Date
column, the title from the Movie column, the genre from the Genre column, the budget from the
Production Budget column, and the box_office from the Box Office column of the line.

Convert the title to upper case and remove all leading and trailing whitespace characters. Also encode
the title as utf-8 using string.encode('utf-8') as several titles are foreign and contain
international characters.

For the genre field, remove all leading and trailing whitespace characters. Since the genres have slightly
different values in the database, also perform the following translations: If the genre ==
"Thriller/Suspense", set it to "Thriller". If the genre == "Black Comedy", set it to "Comedy". If the genre
== "Romantic Comedy", set it to "Romance".

For the budget and box_office fields, remove the "$" and "," and "\"" characters from the values. Also,
remove all leading and trailing whitespace characters. Cast the variable to a type int and set the value

to -1 if it is empty.

http://cs327e-fall2017-final-project.s3.amazonaws.com/the-numbers-with-headers.zip
http://cs327e-fall2017-final-project.s3.amazonaws.com/the-numbers-with-headers.zip
https://github.com/cs327e-fall2017/snippets/blob/master/movie_financials.py
https://github.com/cs327e-fall2017/snippets/blob/master/movie_financials.py

2

Pass this function to map and save the output RDD as mapped_rdd. Verify the contents of mapped_rdd
using the provided print_rdd() function.

Step 5. Implement the save_to_db() function for foreachPartition. The function takes as input a list
of tuples where each tuple contains the elements of the mapped RDD. For each tuple in the list, the
function should query the database to see if one or more title_id values exists for the year and movie
being processed. Note that since the movie title was converted to upper case by the map phase, the
primary_title field in the database should also be converted to upper case using the Postgres UPPER()
function.

The number of title_id values returned by the query determines the next step in the logic. If there is a
single title_id value returned, then proceed directly to inserting a record into the Title_Financials table
using the title_id retrieved and the budget and box_office values from the tuple.

If the number of title_id values retrieved is greater than 1, then there is a nested conditional statement
that refines the database query. If the box_office value is greater than zero, add a filter to the original
query that excludes any records which are TV episodes. If the box_office value is not greater than zero,
then add another condition to the original query that matches on the genre value in addition to the title
and year.

Once the refined query has been executed, the returned value is evaluated. If a title_id is returned by
the refined query, use this value to write the new record into the Title_Financials table along with the
budget and box_office values from the tuple. If no title_id is returned, then no database insert should
be done.

Step 6. Create an EMR cluster by cloning a previously terminated cluster. Configure the cluster and copy

your script to the master node. Run the Spark job and debug any errors encountered during execution.

Once the code has no syntax errors and is correctly adding records to the database, add your error-free

movie_financials.py script to your git repo.

Step 7. At this point, your Spark job should be functional, but it is also excruciatingly slow. If you check

the record count of the Title_Financials table, you will see that the job is performing < 5 writes per

second. Stop the long-running Spark job (Control-C) since we are not interested in letting it run for

hours.

Instead, we are going to work on optimizing the job. Review the select statements that are being run by

the job and think of an index that might help speed up each statement. Please read the Postgres

documentation page [5] to review the create index syntax and become familiar with some of the

optional parameters. Also, read the documentation on partial indexes [6] and pay particular

3

attention to Example 11-2 which shows how to exclude uninteresting values. Hint: indexes can contain

expressions, so they can store the movie titles in upper case letters.

Formulate an index for each select statement and create the indexes in psql. Now use the explain

command to generate a query plan. Note that the select statement must have a value for each query

parameter. Generate a query plan for each query and review the output.

Ensure that the query plan is doing an index scan using the intended index (as opposed to a sequential

scan of the whole table). If an index does not appear in the query plan, drop it from the database and try

to come up with an alternate index that is more specific to the search criteria. Hint: an index may be

relevant to more than one query.

Once the indexes have been created, use the \timing option in psql to check the runtime of each

query. This is an important step because an index can sometimes hurt performance. If an index is not

providing any time savings, drop it from the database.

Save the create index statement for each verified index. Place the statements in a file named

create_indexes.sql. Similarly, for each query, save the explain output that contains the index scan and

copy it to a file named explain.out. Add both files to your git repo.

Truncate the Title_Financials table to avoid primary key violation errors. Now re-run the Spark job with

the new indexes in place. You should notice an immediate speedup if the indexes are relevant. The

actual runtime for the optimized job will vary, but it should complete in less than 30 minutes.

Step 8. Connect to your IMDB database and retrieve the number of records from the Title_Financials

table. The number should be in the 15,000 range. Copy the SQL query and its output into a new file.

Save the file as title_financials.out and add it to your git repo.

Step 9. Create a foreign key on the title_id column of the Title_Financials table. The foreign key

should point to the title_id column of its parent table. The ALTER TABLE command page [4] in the

Postgres manual has an example on how to add a foreign key constraint to an existing table. Copy the

foreign key statement to a file named alter_title_financials.sql. Add this file to your git repo.

Step 10. Write an aggregate query that accesses the new table in some interesting way and wrap this

query inside a view. This query should join Title_Financials with Title_Basics. Name this view

v_title_financials. The view should be virtual if it executes in < 10 seconds or materialized if takes

longer. Create the view in your IMDB database and add the view definition to a file. Name the file

v_title_financials.sql and add it to your git repo.

4

Step 11. Create a QuickSight analysis that visualizes the output from your view. Create a dashboard for

the analysis and share it with the IAM admin user. Also, take a screenshot of the analysis and save it as a

png or jpg format. Add the screenshot to your git repo.

Step 12. Locate the commit id that you will be using for your submission. This is a long 40-character that

shows up on your main GitHub repo page next to the heading "Latest commit" (e.g. commit

6ca6f695bca36f7fc2c33485d1080ae30f8b9928). Locate the link to your GitHub repo (e.g.

https://github.com/cs327e-fall2017/xyz.git where xyz is your repo name). Go back to your existing

Stache entry and locate the read-only API endpoint and read key.

Replace the commit id, repo link, API endpoint, and read key in the json string below with your own:

{
 "repository-link": "https://github.com/cs327e-spring2017/xyz.git",
 "commit-id": "6ca6f695bca36f7fc2c33485d1080ae30f8b9928",
 "stache-endpoint": "/api/v1/item/read/61515",
 "stache-read-key": "b2eacb0387a919e33b27e7c03a6c5d84b71234795732be33eb28711ec16f0e21"
}

Create a submission.json file that contains your modified json string. Click on the Final Project Milestone

3 in Canvas and upload submission.json. Do not add submission.json to your git repo.

This submission is due by Friday, 11/17 at 11:59pm. If it's late, there will be a 10% grade reduction per

late day. This late policy is also documented in the syllabus.

Additional Notes:

• Remember to treat your EMR as a disposable resource as opposed to a persistent cluster. Terminate

it whenever you are not doing any active development. Otherwise, you will quickly run out of AWS

credits!

• Continue to develop your code locally, using scp to transfer each new version of the code to the

EMR master node. This avoids the whole situation of losing your code when your cluster gets

destroyed.

References and Additional Resources:

[1] Snippets Wiki: https://github.com/cs327e-fall2017/snippets/wiki
[2] Milestone 3 Grading Rubric: http://www.cs.utexas.edu/~scohen/projects/m3-rubric.pdf
[3] Spark Programming Guide: https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

https://github.com/cs327e-fall2017/snippets/wiki
http://www.cs.utexas.edu/~scohen/projects/m3-rubric.pdf
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

5

[4] Postgres ALTER TABLE command: https://www.postgresql.org/docs/9.6/static/sql-altertable.html
[5] Postgres CREATE INDEX command: https://www.postgresql.org/docs/9.6/static/sql-createindex.html
[6] Postgres Partial Indexes: https://www.postgresql.org/docs/current/static/indexes-partial.html

https://www.postgresql.org/docs/9.6/static/sql-altertable.html
https://www.postgresql.org/docs/9.6/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/indexes-partial.html

