
Indexes

CS 327E
October 23, 2017

Announcements:
• Midterm: Next class in ETC 2.108
• Review session: Tomorrow at 11am in GDC 5.304
• Final Project phase: Starts next week

Midterm:
• Closed book exam
• No cheat sheets allowed :((
• Lasts 90 minutes
• Covers all topics to-date, including indexes
• 17 True/False questions
• 10 Multiple Choice questions
• 7 SQL questions

1) How does an index improve a query’s access path?

A) It cuts down on the number of rows that need to be scanned.
B) It cuts down on the number of columns that need to be scanned.
C) It splits up the data across multiple DB instances.
D) It replicates the data across multiple DB instances.

2) Which of the following costs are associated with indexes?

A) Indexes slow down update operations.
B) Indexes slow down insert operations.
C) Indexes slow down delete operations.
D) All of the above.

3) SQL allows an index to be created on multiple columns as long as
those columns belong to the same table.

A) True
B) False

4) An index on a boolean column is generally helpful.

A) Yes
B) No

5) Consider a 100m row table with 250+ columns. This table is being
used to run large aggregate queries that access most of the rows, but
only a few attributes at one time. Can partitioning this table
potentially speed-up the queries? If so, what type of partitioning?

A) Yes, using vertical partitioning.
B) Yes, using horizontal partitioning.
C) No, partitioning is unlikely to have much impact.

Employee tablePreliminaries

Source: Ramakrishnan and Gehrke, DBMS Systems, 3rd edition, 2003.

• Critical to database systems

• At least one index per table

• DBA analyzes workload and
decides which indexes to create
(no easy answers)

• Creating indexes can be an
expensive operation

• They work “behind the scenes”

• Query optimizer decides which
indexes to use during query
execution

•

Employee tableDatabase Indexes

root node

branch nodes

leaf nodes

Properties of B+ Trees

• height is balanced

• has several children

• data stored in the leaf nodes

• leaf nodes are ordered

• leaf nodes are connected (doubly linked list)

• each node stores several index entries

• index entry = (key value, pointer)

• search speed ≈ height of tree

Structure of a B+ Tree

Format of a Node

Employee tableSearch Algorithm

• Let S = Search Key

• Let K = Key Value

• An Index Entry = (P, K)

• Begin at root:
• If S < K, follow K’s left pointer
• If S = K, follow K’s right pointer
• If S > K and K is not in last entry, scan forward to next entry
• Repeat for each entry until last entry is reached:

• If S < K, follow K’s left pointer
• If S ≥ K, follow K’s right pointer

• Repeat until leaf node is reached

• Scan forward leaf node until K = S

• Follow K’s pointer to row id in data file

root

branch

leaf

RHS of B+ Tree

Demo

Practice Problem 1

Suppose we want to find all the 'Saturday Night Live' episodes using the query:

select te.*, tb.primary_title, start_year

from Title_Episodes te join Title_Basics tb on te.title_id = tb.title_id

where te.parent_title_id = (select title_id from Title_Basics

where primary_title = 'Saturday Night Live'

and title_type = 'tvSeries' and start_year = 1975)

order by season_num, episode_num;

This query runs in ~7 sec and we want to get it under 1 sec. Can you suggest some
indexes that would improve the access path of this query?

Note that the primary key columns (Title_Basics.title_id and Title_Episodes.title_id) have
already been indexed by the DBMS.

Practice Problem 1

Suppose we want to find all the 'Saturday Night Live' episodes using the query:

select te.*, tb.primary_title, start_year

from Title_Episodes te join Title_Basics tb on te.title_id = tb.title_id

where te.parent_title_id = (select title_id from Title_Basics

where primary_title = 'Saturday Night Live'

and title_type = 'tvSeries' and start_year = 1975)

order by season_num, episode_num;

How many indexes would you create to speed up this query?
A) 0 indexes
B) 1 index
C) 2 indexes
D) ≥ 3 indexes

