CS 327E Class 9

November 19, 2018

Announcements

e \What to expect from the next 3 milestones (Milestones 8 - 10)
e How to get feedback on your cross-dataset queries and pipeline designs
today. Sign-up sheet: https://tinyurl.com/y9fdoggk

https://tinyurl.com/y9fdogqk

How is a ParDo massively parallelized?

The ParDo’s DoFn is run on multiple workers and each worker processes a
different split of the input elements.

The instructions inside the ParDo’s DoFn are split up among multiple workers
and each worker runs a single instruction over all the input elements.

2) If a ParDo is processing a PCollection of 100 elements, what
is the maximum parallelism that could be obtained for this
pipeline?

A. 50

B. 100

C. 200

D. None of the above

3) Ifa PCollection of 100 elements is divided into 10 bundles by
the runner and each bundle is run on a different worker, what is the
actual parallelism of this pipeline?

50

100

200

None of the above

OO w2

4) In a pipeline that consists of a sequence of ParDos 1- n, how
can the runner execute the transforms on multiple workers while
minimizing the communication costs between the workers?

A. Alter the bundling of elements between each ParDo such that an element
produced by ParDol on worker A gets consumed by ParDo2 on worker B.

B. Maintain the bundling of elements between the ParDos such that an element
that is produced by ParDol on worker A gets consumed by ParDo2 on
worker A.

C. Split up the workers into n groups and run each pParDo on a different group of
workers.

D. Split up the ParDos into their own pipelines as it is not possible to reduce the
communication costs when multiple transforms exist in the same pipeline.

5) What happens when a pParDo fails to process an element?

A. The processing of the failed element is restarted on the same worker.
B. The processing of the failed element is restarted on a different worker.
C. The processing of all the bundle is restarted on either the same worker or a

different worker.
D. The processing of the entire PCollection is restarted on either the same
worker or a different worker.

Case Study

Analysis Questions:

e Are young technology companies as likely to sponsor H1B workers as more
established companies?

e How does the compensation of H1B workers compare to the average earnings of
domestic workers who are performing the same role and living in same geo
region?

Datasets:

e H1B applications for years 2015 - 2018 (source: US Dept of Labor)

e Corporate registrations for various states (source: Secretary of States)

e Occupational Employment Survey for years 2015 - 2018 (source: Bureau of Labor
Statistics)

Code Repo: hitps://github.com/shirleycohen/h1b_analytics

https://github.com/shirleycohen/h1b_analytics

Objectives

Cross-Dataset Query 1:

Join H1B’s Employer table with the Sec. of State’s Corp. Registry table on the
company’s name and location. Get the age of the company from the incorporation
date of the company’s registry record. Group the employers by age (0 - 5 years
old, 6 - 10 years old, 11 - 20 years old, etc.) and see how many younger tech
companies sponsor H1B workers.

Technical challenges: 1) matching employers within the H1B dataset due to
inconsistent spellings of the company’s name and 2) matching employers across
H1B and Corporate Registry datasets due to inconsistent spellings of the
company’s name and address.

Objectives

Cross-Dataset Query 2:

e Join H1B’s Job table with the Bureau of Labor Statistics’ Wages and Geography
tables on the soc_code and job location. Calculate the annual salary from the
hourly wages reported in the Wages table and compare this number to the H1B
workers’ pay.

e Technical challenges: joining the job location to the BLS geography area requires
looking up the job location’s county and mapping the country name to the
corresponding area code in the Geography table.

First Dataset

Table Details: H1B_Applications_2017

‘ Schema Details

case_number
visa_class
case_status
employer_name
employer_business_dba
employer_address
employer_city
employer_state
employer_postal_code
employer_country
employer_province
employer_phone
employer_phone_ext
naics_code
soc_name

soc_code

job_title
total_workers
case_submitted

decision_date

Preview

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

INTEGER

TIMESTAMP

TIMESTAMP

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

employment_start_date
employment_end_date
full_time_position
prevailing_wage
pw_unit_of_pay
wage_rate_of_pay_from
wage_rate_of_pay_to
wage_unit_of_pay
worksite_city
worksite_county
worksite_state
worksite_postal_code

agent_attorney_name

agent_representing_employer

agent_attorney_city
agent_attorney_state
h1b_dependent
willful_violator
original_cert_date
new_employment

continued_employment

h 1

ge_previous_employ

new_concurrent_employment

TIMESTAMP

TIMESTAMP

BOOLEAN

FLOAT

STRING

FLOAT

FLOAT

STRING

STRING

STRING

STRING

STRING

STRING

BOOLEAN

STRING

STRING

BOOLEAN

BOOLEAN

TIMESTAMP

FLOAT

FLOAT

FLOAT

FLOAT

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

NULLABLE

change_employer
amended_petition
pw_wage_level
pw_source
pw_source_year
pw_source_other
support_h1b

labor_con_agree

public_disclosure_location

FLOAT NULLABLE
FLOAT NULLABLE
STRING NULLABLE
STRING NULLABLE
STRING NULLABLE
STRING NULLABLE
STRING NULLABLE
BOOLEAN NULLABLE
STRING NULLABLE

Table Details:

2015 table: 241 MB size,
2016 table: 233 MB size,
2017 table: 253 MB size,
2018 table: 283 MB size,

Table Schemas:

618,804 rows
647,852 rows
624,650 rows
654,162 rows

-A few schema variations between the
tables (column names, data types).
-All schema variations resolved
through CTAS statements.

SQL Transforms

6 -~ Create Employer_Temp tables and assign each record a unique employer_id

7 -~ Table contains duplicate employer records, will need to remove duplicates through Beam

8 CREATE TABLE hlb_split.Employer_Temp AS

9 SELECT generate_uuid() as employer_id, =*

18 FROM

11 (SELECT DISTINCT employer_name, employer_address, employer_city, employer_state,

12 employer_postal_code, employer_country, employer_province, CAST(employer_phone AS STRING) as employer_phone,
13 CAST(CASE WHEN hlb_dependent = 'N' THEN 'False’

14 WHEN hlb_dependent = 'Y' THEN 'True'

15 ELSE NULL END as BOOL) AS hib_dependent,

16 willful_violator

17 FROM ‘cs327e-fa2018.hlb_raw.H1B_Applications_2018"

1 WHERE employer_name IS NOT NULL AND employer_name != '1' AND employer_city IS NOT NULL

19 UNION DISTINCT

28 SELECT DISTINCT employer_name, employer_address, employer_city, employer_state,

21 employer_postal_code, employer_country, employer_province, employer_phone, hlb_dependent, willful_violator
22 FROM *cs327e-fa2018.h1b_raw.H1B_Applications_2017"

23 WHERE employer_name IS NOT NULL AND employer_name != '1' AND employer_city IS NOT NULL

24 UNION DISTINCT

25 SELECT DISTINCT employer_name, employer_address, employer_city, employer_state,

26 employer_postal_code, employer_country, employer_province, employer_phone, hlb_dependent, willful_violator
27 FROM ‘cs327e-fa2018.hlb_raw.H1B_Applications_2016"

28 WHERE employer_name IS NOT NULL AND employer_name != '1' AND employer_city IS NOT NULL

29 UNION DISTINCT

39 SELECT DISTINCT employer_name, CONCAT(employer_addressl, ' ', employer_address2) as employer_address, employer_city, employer_state,
31 employer_postal_code, employer_country, employer_province, employer_phone, hlb_dependent, willful_violator
32 FROM ‘cs327e-fa2018.hlb_raw.H1B_Applications_2015"

33 WHERE employer_name IS NOT NULL AND employer_name != '1' AND employer_city IS NOT NULL

4 Al)

35 ORDER BY employer_name, employer_city;

Source File: https://github.com/shirleycohen/h1b_analytics/blob/master/h1b_ctas.sal

https://github.com/shirleycohen/h1b_analytics/blob/master/h1b_ctas.sql

H1B Analytics ERD Version 1

Application_Temp

Employer Temp

PK |employer_id String
employer_name String
employer_address String
employer_city String
employer_state String

employer_postal_code |String

PK |case_number String
case_status String
case_submitted Date
decision_date Date
visa_class String

FK |job_id String

FK |employer_name String

FK |employer_city String

FK |employer_state String

FK |attorney_id String

Attorney

PK |attorney_id String
attorney_name String
attorney_city String
attorney_state String

employer_country String
employer_province String
employer_phone String
hib_dependent Boolean
willful_violator Boolean

Notes:

Source Tables: hlb_raw.H1B_Applications_<year>
where <year> = 2015 - 2018.
Each table was loaded from a different CSV file.

Target Tables: Tables showed in this ERD were created
in the hlb_split dataset. All tables created and populated
from CTAS statements.

Issues with Target Tables:

- Employer_Temp contains duplicate records due to
mispellings of the employer name and city.

- Job_Temp and Application_Temp are missing
references to Employer table via employer_id.

Job_Temp
PK |job_id String
FK [employer_name String
FK |employer_city String
FK [employer_state String
employment_start_date |Date
employment_end_date |Date
job_title String
wage_rate_of_pay_from |Float
wage_rate_of_pay_to Float
wage_unit_of_pay String
worksite_city String
worksite_country String
worksite_state String
worksite_postal_code String
soc_code String
soc_hame String
total_workers Integer
full_time_position Boolean
prevailing_wage Float
pw_unit_of_pay String
pw_wage_level String
pw_source String
pw_source_year Integer
pw_source_other String

Beam Transform for Employer Table

e Removes duplicate records from Employer Table
e Version 1 of pipeline uses the Direct Runner for testing and debugging

with beam.Pipeline('DirectRunner', options=opts) as p:
query_results = p | 'Read from BigQuery' >> beam.io.Read(beam.io.BigQuerySource(query="'SELECT % FROM hlb_split.Employer ORDER BY employer_name limit 100'))

write PCollection to log file
query_results | 'Write to File 1' >> WriteToText('query_results.txt')

apply ParDo to the Employer records
tuple_pcoll = query_results | 'Transform Employer Name' >> beam.ParDo(TransformEmployerName())

write PCollection to log file
tuple_pcoll | 'Write to File 2' >> WriteToText('output_pardo_employer_tuple.txt')

deduped_pcoll = tuple_pcoll | 'Dedup Employer Records' >> beam.GroupByKey()

write PCollection to log file
deduped_pcoll | 'Write to File 3' >> WriteToText('output_group_by_key.txt")

apply second ParDo to the PCollection
out_pcoll = deduped_pcoll | 'Create Employer Record' >> beam.ParDo(MakeRecord())

Source File: https://github.com/shirleycohen/h1b_analytics/blob/master/transform_employer_table_single.py

https://github.com/shirleycohen/h1b_analytics/blob/master/transform_employer_table_single.py

Beam Transform for Employer Table

e Removes duplicate records from Employer Table
e \ersion 2 of pipeline uses the Dataflow Runner for parallel processing

run pipeline on Dataflow

options = {
'runner': 'DataflowRunner’,
'job_name': 'dedup-employer-table',

'project': PROJECT_ID,
'temp_location': BUCKET + '/temp',
'staging_location': BUCKET + '/staging',
'machine_type': 'nl-standard-8',
'num_workers': 8

}

opts = beam.pipeline.PipelineOptions{flags=[], #*xoptions)

with beam.Pipeline(options=opts) as p:
query_results = p | 'Read from BigQuery' >> beam.io.Read(beam.io.BigQuerySource(query="'SELECT % FROM hlb_split.Employer_Temp ORDER BY employer_name'))

write PCollection to log file
query_results | 'Write to File 1' >> WriteToText(DIR _PATH + 'gquery_results.txt')

apply ParDo to the Employer records
tuple_pcoll = query_results | 'Transform Employer Name' >> beam.ParDo(TransformEmployerName())

write PCollection to a log file
tuple_pcoll | 'Write to File 2' >> WriteToText(DIR_PATH + 'output_pardo_employer_tuple.txt')

deduped_pcoll = tuple_pcoll | 'Dedup Employer Records' >> beam.GroupByKey()

Source File: https://github.com/shirleycohen/h1b_analytics/blob/master/transform_employer_table_cluster.py

https://github.com/shirleycohen/h1b_analytics/blob/master/transform_employer_table_cluster.py

Beam Transforms for Job and Application Tables

Clean the employer name and city and find the matching employer_id from
Employer table to use as reference in the Job and Application tables
Pipeline Sketch for Job Table:

1.

S.
6.

Read in all the records from the Employer and Job tables in BigQuery and
create a PCollection from each source

Clean up the employer’'s name and city from the Job PCollection (using
ParDo)

Join the Job and Employer PCollections on employer's name and city
(using CoGroupByKey).

Extract the matching employer _id from the results of the join and add it to the
Job element (using ParDo)

Remove employer's name and city from the Job element (using ParDo)
Write out new Job table to BigQuery

Repeat procedure for Application table

H1B Analytics ERD Version 2

Application

PK |case_number String
case_status String
case_submitted Date
decision_date Date
visa_class String

FK |job_id String

FK |employer_id String

FK |attorney_id String

Attorney

PK |attorney_id String
attorney_name String
attorney_city String
attorney_state String

Employer
PK |employer_id String
employer_name String
employer_address String
employer_city String
employer_state String

employer_postal_code | String

employer_country String
employer_province String
employer_phone String
h1lb_dependent Boolean
willful_violator Boolean

Job

Number of Rows

vl v2
Employer | 348,876 161,759
Job 2,230,779 | 2,230,625
Application| 2,633,426 | 2,633,156
Attorney 19,861 N/A

Notes:

Source Tables: hlb_split. Employer_Temp,
hlb_split.Application_Temp, hlb_split.Job_Temp

Target Tables: hlb_split. Employer,
hlb_split.Application, h1b_split.Job. All new tables
created and populated from Beam pipelines.

Changes since previous version:

- Removed 187,117 duplicate records from
Employer table based on uniqueness criteria of
(employer name, city) pairs.

- Added reference to employer_id from Job and
Application tables.

PK
FK

job_id

employer_id
employment_start_date
employment_end_date
job_title
wage_rate_of_pay_from
wage_rate_of_pay_to
wage_unit_of_pay
worksite_city
worksite_county
worksite_state
worksite_postal_code
soc_code

soc_name
total_workers
full_time_position
prevailing_wage
pw_unit_of_pay
pw_wage_level
pw_source
pw_source_year
pw_source_other

String
String
Date
Date
String
Float
Float
String
String
String
String
String
String
String
Integer
Boolean
Float
String
String
String
Integer

String

Milestone 8

http://www.cs.utexas.edu/~scohen/milestones/Milestone8.pdf

http://www.cs.utexas.edu/~scohen/milestones/Milestone8.pdf

