CS 327E Class 10

November 26, 2018

Announcements

e Scheduling your group presentation for Milestone 10. All presentations will
happen on week of 12/10 M-F in the evenings. Send me your preferred
days/times by Friday.

e How to get feedback on your cross-dataset queries and pipeline designs
today. Sign-up sheet: https://tinyurl.com/y9fdoggk

https://tinyurl.com/y9fdogqk

1) What is meant by the following usage pattern?

Apply
BigQuerylO.write

PCollection

S Apply
BigtablelO.write

A. The elements in the PCollection are split up such that 1/2 elements are
written to BigQuery and 1/2 are written to Bigtable.

B. The same PCollection can be written to multiple data sinks including
BigQuery and Bigtable.

C. The PCollection can only be written to BigQuery or Bigtable.

2) How do the authors suggest handling bad data?

A. Send the bad data out of the DoFn as a SideOutput in a try-catch block.
B. Send the bad data into the DoFn as a Sidelnput.
C. Log the bad data without writing it to a back-end database.

3) What method do the authors suggest for triggering a Dataflow
pipeline that needs to start after a file has been uploaded to Google
Cloud Storage?

A. Use a simple REST endpoint to trigger the pipeline.
B. Open CloudShell and run the pipeline from the command-line.
C. Trigger the pipeline from Google Cloud Storage.

4) What is meant by the following usage pattern?

DoFn

Input Source) Parse Create Key Value Pair
§ Data Element: R Key = (Property A +"-"+Property B) =2 Group By Key
Property A Value = Data
Property B

Property (C..X)

A. GroupByKey requires a preceding DoFn step in the pipeline.
B. GroupByKey requires a composite key as input.
C. Create a composite key to group by multiple properties using GroupByKey.

5) What method do the authors suggest for joining two
PCollections in which one of the PCollections is small?

A. Use a CoGroupByKey transform
B. Use a Sidelnput to a ParDo
C. Use a SQL Join

Case Study: Part 2

H1B Analytics ERD Version 2

Application

PK |case_number String
case_status String
case_submitted Date
decision_date Date
visa_class String

FK |job_id String

FK |employer_id String

FK |attorney_id String

Attorney

PK |attorney_id String
attorney_name String
attorney_city String
attorney_state String

Employer
PK |employer_id String
employer_name String
employer_address String
employer_city String
employer_state String

employer_postal_code | String

employer_country String
employer_province String
employer_phone String
h1b_dependent Boolean
willful_violator Boolean

Job

Number of Rows

vl v2
Employer | 348,876 161,759
Job 2,230,779 | 2,230,625
Application| 2,633,426 | 2,633,156
Attorney 19,861 N/A

Notes:

Source Tables: hlb_split. Employer_Temp,
hlb_split.Application_Temp, hlb_split.Job_Temp

Target Tables: hlb_split.Employer,
hlb_split. Application, hlb_split.Job. All new tables
created and populated from Beam pipelines.

Changes since previous version:

- Removed 187,117 duplicate records from
Employer table based on uniqueness criteria of
(employer name, city) pairs.

- Added reference to employer_id from Job and
Application tables.

PK
FK

job_id

employer_id
employment_start_date
employment_end_date
job_title
wage_rate_of_pay_from
wage_rate_of_pay_to
wage_unit_of_pay
worksite_city
worksite_county
worksite_state
worksite_postal_code
soc_code

soc_name
total_workers
full_time_position
prevailing_wage
pw_unit_of_pay
pw_wage_level
pw_source
pwW_source_year
pw_source_other

String
String
Date
Date
String
Float
Float
String
String
String
String
String
String
String
Integer
Boolean
Float
String
String
String
Integer
String

Second Dataset

Table Details: Corporate_Registrations_CA State Table Details:
e ——— AZ: 225 MB size, 869,943 rows
CA: 1.1 GBsize, 3,792,457 rows
so_file_number STRING chief_executive_officer_address_line_1 STRING CO: 38 MB size’ 160’808 rows
corporation_number INTEGER chief_executive_officer_address_line_2 STRING CT: 192 MB size , 796,877 rows
corporation_status STRING chief_executive_officer_address_city STRING GA 302 MB Si‘Ze, 2;0761016 rOWS;
. ’ . chief_executive_officer_address_state_or_county STRING 116 MB SIZe, 2’063’919 rows
corporation_classification STRING . ' ' MA 221 MB Size, 1,066,639 rows
chief_executive_officer_address_zip_code STRING)
corporation_name STRING MN: 374 MB size, 1,688,714 rows;
R srrive |1 e 799 MB size, 4,072,355 rows
, , e STRING MO: 133 MB size, 2,364,476 rows;
mail_address_line_1 STRING ! .
agent_address_line_2 STRING 519 MB S|Ze, 2’115’151 rows
P e 2 i agent_address_city STRING NC: 262 MB size, 1,389,877 rows
mail_address_city STRING agent_address_state_or_county STRING OH 497 MB Size, 2,408,556 rows
mail_address_state_or_country STRING agent_address_zip_code STRING NY: 512 MB size, 2,587,015 rows
mail_address_zip_code STRING state_or_foreign_country STRING VA:111 MB SI%e’ 334’ 008 rows
WA: 205 MB size, 1,152,309 rows
corporation_type STRING ftb_suspension_status STRING
incorporation_date DATE corporation_tax_base SIRING Table SChem as:
so_file_date DATE frenascien W S e -Each state has unique schema for
s axpiatice ers ol ftb_suspension_string STRING tracking its corporate registrations.
fller STRING -Consistent schema for subset of fields
chief_executive_officer_name STRING .
successfully derived through CTAS.

SQL Transforms

1
2

v

A

create table sec_of_state.Corporate_Registrations_Merged

(
corporation_id STRING,
corporation_name STRING,
corporation_city STRING,
corporation_state STRING,
registration_date DATE,
empty_date DATE

)

PARTITION BY empty_date

CLUSTER BY corporation_state;

create table sec_of_state.Corporate_Registrations_Cleaned

(
corporation_id STRING,
corporation_name STRING,
corporation_city STRING,
corporation_state STRING,
registration_date DATE,
empty_date DATE

)

PARTITION BY empty_date

CLUSTER BY corporation_state;

—AZ

insert into sec_of_state.Corporate_Registrations_Merged (corporation_id,
select distinct File_Number, Corporation_Name, First_Address_City, 'AZ',
from sec_of_state.Corporate_Registrations_AZ

where First_Address_State = 'AZ’

order by corporation_name;

—CA
insert into sec_of_state.Corporate_Registrations_Merged (corporation_id,

corporation_name, corporation_city, corporation_state, registration_date)
Date_of_Incorporation

corporation_name, corporation_city, corporation_state, registration_date)

select CAST(corporation_number as STRING), corporation_name, mail_address_city, 'CA', incorporation_date

from sec_of_state.Corporate_Registrations_CA

where corporation_type = 'Articles of Incorporation'
and mail_address_state_or_country = 'CA'

order by corporation_name;

Source File: https://github.com/shirleycohen/h1b_analytics/blob/master/corporate_registrations ctas.sal

https://github.com/shirleycohen/h1b_analytics/blob/master/corporate_registrations_ctas.sql

H1B Analytics ERD Version 3

Job

Application Employer
PK |case_number String PK |employer_id String
case_status String =i employer_name String
case_submitted Date employer_address String
decision_date Date — employer_city String
visa_class String —— employer_state String
FK |job_id String employer_postal_code | String
FK |employer_id String employer_country String
FK |attorney_id String J employer_province String
employer_phone String
hlb_dependent Boolean
willful_violator Boolean
Attorney
PK |attorney_id String
attorney_name String
attorney_city String
Bimevesate Sting | FCorporate_Registrations_Merged\\
PK corporation_id String
i corporation_name String
| corporation_city String
— corporation_state String
registration_date Date

PK
FK

job_id

employer_id
employment_start_date
employment_end_date
job_title

wage_rate_of pay_from
wage_rate_of_pay_to
wage_unit_of_pay
worksite_city
worksite_county
worksite_state
worksite_postal_code
soc_code

soc_name
total_workers
full_time_position
prevailing_wage
pw_unit_of_pay
pw_wage_level
pw_source
pw_source_year
pw_source_other

String
String
Date
Date
String
Float
Float
String
String
String
String
String
String
String
Integer
Boolean
Float
String
String
String
Integer
String

Notes:

New Source Tables:
sec_of_state.Corporate_Registrations_<state>
where <state> = AZ, CA, CO, CT, GA, MA, MN,
MO, NC, NY, OH, VA, WA.

Each state table was loaded from a CSV file.
Most of the states had one table, a few had two.

New Target Table:
-sec_of_state.Corporate_Registrations_Merged
-created and populated from CTAS statements.
-390 MB in size with 16,379,107 rows.

Issues with Target Table:

- corporation_name and corporation_city contain
punctuation marks; corporation_name contains
suffixes (LLC, INC, etc.)

- only 804 results returned from joining
Corporate_Registrations_Merged and Employer
on name and city.

Beam Transforms

PROJECT_ID = os.environ['PROJECT_ID']
Project ID is needed for BigQuery data source, even for local execution.
options = {
'project': PROJECT_ID
}
opts = beam.pipeline.PipelineOptions(flags=[], s*xoptions)
with beam.Pipeline('DirectRunner', options=opts) as p:

query_str = 'SELECT corporation_id, corporation_name, corporation_city, corporation_state, registration_date ' \
'FROM “sec_of_state.Corporate_Registrations_Merged® LIMIT 100'

query_results = p | 'Read from BQ CorpReg' >> beam.io.Read(beam.io.BigQuerySource(query=query_str, use_standard_sql=True))
query_results | 'Write to File 1' >> WriteToText('output_query_results.txt')

clean_pcoll = query_results | 'Transform CorpReg Record' >> beam.ParDo(TransformCorpRegRecord())

clean_pcoll | 'Write to File 2' >> WriteToText('output_bq_records.txt')

qualified_table_name = PROJECT_ID + ':sec_of_state.Corporate_Registrations_Cleaned'
table_schema = 'corporation_id:STRING, corporation_name:STRING, corporation_city:STRING,corporation_state:STRING,registration_date:DATE'

clean_pcoll | 'Write to BQ CorpReg' >> beam.io.Write(beam.io.BigQuerySink(qualified_table_name,
schema=table_schema,
create_disposition=beam.io.BigQueryDisposition.CREATE_NEVER,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))

Source File: https://github.com/shirleycohen/h1b_analytics/blob/master/transform_corpreg_table_single.py

https://github.com/shirleycohen/h1b_analytics/blob/master/transform_corpreg_table_single.py

Beam Transforms

options = {
'runner': 'DataflowRunner’,
'job_name': 'transform-corp-reg-table',
'project': PROJECT_ID,
'temp_location': BUCKET + '/temp',
'staging_location': BUCKET + '/staging',
'machine_type': 'nl-standard-8',
'num_workers': 12
}
opts = beam.pipeline.PipelineOptions(flags=[], **options)

with beam.Pipeline('DataflowRunner', options=opts) as p:

query_str = 'SELECT corporation_id, corporation_name, corporation_city, corporation_state, registration_date ' \
'FROM “sec_of_state.Corporate_Registrations_Merged® WHERE corporation_name IS NOT NULL AND corporation_city IS NOT NULL'

query_results = p | 'Read from BQ CorpReg' >> beam.io.Read(beam.io.BigQuerySource(query=query_str, use_standard_sql=True))
query_results | 'Write to File 1' >> WriteToText(DIR_PATH + 'output_query_results.txt')

clean_pcoll = query_results | 'Transform CorpReg Record' >> beam.ParDo(TransformCorpRegRecord())

clean_pcoll | 'Write to File 2' >> WriteToText(DIR_PATH + 'output_bq_records.txt"')

qualified_table_name = PROJECT_ID + ':sec_of_state.Corporate_Registrations_Cleaned'
table_schema = 'corporation_id:STRING, corporation_name:STRING, corporation_city:STRING, corporation_state:STRING, registration_date:DATE'

clean_pcoll | 'Write to BQ CorpReg' >> beam.io.Write(beam.io.BigQuerySink(qualified_table_name,
schema=table_schema,
create_disposition=beam.io.BigQueryDisposition.CREATE_NEVER,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))

Source File: hitps://github.com/shirleycohen/h1b_analytics/blob/master/transform_corpreg_table_cluster.py

https://github.com/shirleycohen/h1b_analytics/blob/master/transform_corpreg_table_cluster.py

Dataflow Execution

Worker history
@ Read from BQ CorpReg Nov 25, 2018 7:56 PM
Succeeded
1 hr 2min 10 sec 15.0
9 Write to File 1 ¥ 4 Transform CorpReg Re...
Succeeded Succeeded
5min 11 sec 42 min 20 sec Jd—’.\
0
8 PM 8.05 8:10
@ current workers: @ Target workers:
@ Write to File 2 X @ writeto BQ CorpReg
Su ed Succeeded Target workers Timestamp v Rationale
7 min 10 sec 8 min 21 sec
0 Nov 25, 2018, Stopping worker pool.
8:08:08 PM
Job summary 4 Nov 25, 2018, Autoscaling: Raised the number of workers to 4 based on the rate of progress in
8:04:58 PM the currently running step(s).
Job name transform-corp-reg-table
Job ID 2018-11-25_17_55_55- 3 Nov 25, 2018, Autoscaling: Raised the number of workers to 3 based on the rate of progress in
2850952765719790096 8:02:28 PM the currently running step(s).
Region us-centrall 2 Nov 25, 2018, Autoscaling: Raised the number of workers to 2 based on the rate of progress in
Job status 0 Succeeded 8:01:28 PM the currently running step(s).
SDK version Google Cloud Dataflow SDK for 1 Nov 25, 2018, Autoscaling: Reduced the number of workers to 1 based on the rate of progress in
Python 2.5.0 7:59:28 PM the currently running step(s).
Job type Batch 12 Nov 25, 2018, Starting a pool of 12 workers.
Start time Nov 25, 2018, 7:55:57 PM 7:56:02 PM

Elapsed time 16 min 20 sec

H1B Analytics ERD Version 4

Job

Application Employer
PK |case_number String PK |employer_id String
case_status String —— employer_name String
case_submitted Date employer_address String
decision_date Date — employer_city String
visa_class String —— employer_state String
FK |job_id String employer_postal_code |String
FK |employer_id String employer_country String
FK |attomey_id String J employer_province String
employer_phone String
hlb_dependent Boolean
willful_violator Boolean
Attorney
PK |attorney_id String
attorney_name String
attorney_city String
Ul SRS String Corporate_Registrations_Cleaned
PK corporation_id String
} corporation_name String
} corporation_city String
] corporation_state String
registration_date Date

PK
FK

job_id

employer_id
employment_start_date
employment_end_date
job_title
wage_rate_of_pay from
wage_rate_of_pay to
wage_unit_of pay
worksite_city
worksite_county
worksite_state
worksite_postal_code
soc_code

soc_name
total_workers
full_time_position
prevailing_wage
pw_unit_of_pay
pw_wage_level
pw_source
pW_source_year
pw_source_other

String
String
Date
Date
String
Float
Float
String
String
String
String
String
String
String
Integer
Boolean
Float
String
String
String
Integer
String

Notes:

New Source Tables:
sec_of_state.Corporate_Registrations_Merged.

New Target Table:
-sec_of_state.Corporate_Registrations_Cleaned.
-generated from Beam pipeline.

Changes since previous version:

- removed punctuation marks and suffixes from
corporation_name.

- performed simple validation of corporation_city.

- cross-dataset join returns 12,856 results (instead
of only 804 results).

Number of Rows

vl v2

Corporate_Registrations | 16,379,107 | 16,321,932

Employer 348,876 161,759

v_Tech_Employer 13 States 29,658

Cross-Dataset Queries

v_Tech_Employer_Age:

e Joins Employer and Corporate Registrations on name and state
® Calculates age of employer from registration_date

v_Tech_Employer_Age Label:
® Assigns a label to the employer based on their age range (0, 1-2, 3-12, 13-17, 18+)
v_Tech_Employer_Age Label report:

® Groups employers by age label and state combination
e (Calculates employer count per group

Source File: https://github.com/shirleycohen/h1b_analytics/blob/master/employer_ views.sql

https://github.com/shirleycohen/h1b_analytics/blob/master/employer_views.sql

Data Studio

Report

Number of H1B Employers* per Age Group

@ Ages 3-12
@ Ages 18+
® Ages 13-17
@ Ages1-2
® Age0

*Only includ. ployers who sp H1B workers in technical
roles.

Number of "Crawling" Startups (age 0)

NY |
0

2 4 6 8 10

Number of "Walking" Startups (ages 1-2)

Number of "Running" Startups (ages 3-12)

Number of "Flying" Startups (ages 13-17)

Number of "Grownup" Startups (ages 18+)

CA
MA
MN
OH

NC

CT

0 350 700 11K 1.4K 1.8K 21K

Tips & Tricks

e Always unit test a job on CloudShell before running the same job on Dataflow.

e After each run, review and delete job output logs on CloudShell.

e |f writing code locally, delete old code on CloudShell before uploading new
code to prevent file renaming.

e If you have a long DoFn, use print () to debug DirectRunner job; use
logging.info () to debug Dataflow job.

e \When working with GroupByKey, cast the UnwindowedvValues object
returned to a list in order to iterate through the values.

e When debugging, try to simplify the logic in order to get to the root cause.
Error messages can be cryptic and misleading.

e If you've simplified the code and still can’t pinpoint the issue, ask for help by
providing all the details (including failed experiments) and allow enough time
for debugging.

Milestone 8

http://www.cs.utexas.edu/~scohen/milestones/Milestone8.pdf

http://www.cs.utexas.edu/~scohen/milestones/Milestone8.pdf

