CS 327E Class 5

October 7, 2019

No Quiz Today

Milestone 4 Feedback

Did you run into any major obstacles with the assignment?

A. My group had problems identifying entity types.
B. My group had problems decomposing large tables.
C. AandB.

D. My group did not face any major problems.

Beam/Dataflow Setup

https://qithub.com/cs327e-fall2019/snippets/wiki/Beam-Dataflow-Setup-Guide

https://github.com/cs327e-fall2019/snippets/wiki/Beam-Dataflow-Setup-Guide

Beam/Dataflow Setup Outcome

Did you successfully complete your setup?

A. Yes, the Wordcount jobs ran without errors.
B. No, | got stuck during the setup and need help.
C. I'mstill setting things up and need more time to finish.

Dataflow Concepts

® A system for processing arbitrary computations on large
amounts of data

® Can process batch data and streaming data using the same
code

® Uses Apache Beam, an open-source programming model
e Designed to be very scalable, millions of QPS

Apache Beam Concepts

e A model for describing data and data processing operations:
0 Pipeline: adata processing task from start to finish
0 PCollection: acollection of data elements
o Transform: adata transformation operation

e SDKs for Java, Python and Go

e Executed in the cloud on Dataflow, Spark, Flink, etc.

e Executed locally with Direct Runner for dev/testing

Beam Pipeline

Pipeline = Adirected acyclic graph where the nodes are the
Transforms and the edges are the PCollections

General Structure of a Pipeline:

o Reads one or more data sources as input PCollections
o Applies one or more PTransforms on PCollections

O Qutputs resulting PCollection as one or more data sinks
Executed as a single unit

Run in batch or streaming mode

PCollection

PCollection = A collection of data elements, either bounded
or unbounded

Elements can be made up primitive and complex types
PCollections are distributed across machines
PCollections areimmutable

Created from a data source ora PTransform

Written to a data sink or passed to another PTransform

PTransform

All operations on data in beam are different kinds of PTransforms

e Element-wise:
o maps 1inputto (1, 0, many) outputs
o Examples: ParDo, Map, FlatMap
® Aggregation:
o reduces many inputs to (1, fewer) outputs
o Examples: GroupByKey, CoGroupByKey
e Composite: combines element-wise and aggregation
O GroupByKey —-> ParDo

PTransform Properties

e Serializable
e Parallelizable
e |dempotent

ParDo

ParDo = “Parallel Do”

Maps 1 input to (1, 0, many) outputs

Takes asinputa PCollection

Applies the user-defined ParDo to the input PCollection
Outputs results as a new PCollection

Typical usage: filtering, formatting, extracting parts of data,
performing computations on data elements

Hello World
Example

N NN R R R B B B R B B 92
N = ® ©W 000 NOWUL A WN M & OO0 N WL & WN =
| | 4 4

N N
S W

import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText

DoFn to perform on each element in the input PCollection.

class ComputeWordLengthFn(beam.DoFn):
def process(self, element):
words = element.strip().split(' ')
result_list = []
for word in words:
result_list.append((word, len(word)))
return result_list

Create a Pipeline using a local runner for execution.
with beam.Pipeline('DirectRunner') as p:

create a PCollection from the file contents.
in_pcoll = p | 'Read' >> ReadFromText('input.txt"')

apply a ParDo to the PCollection
out_pcoll = in_pcoll ||beam.ParDo(ComputeWordLengtth())|

write PCollection to a file
out_pcoll | 'Write' >> WriteToText('output.txt')

Hello World
Example

W 0O N O U & WN =

N NN NNNNNRS R B 2B 9 2 93 23 8 @92
N O U A WN R O WWOONOO U S WNROS®

import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText

DoFn to perform on each element in the input PCollection.
class ComputeWordLengthFn(beam.DoFn):
def process(self, element):
words = element.strip().split(' ')
result_list = []
for word in words:
result_list.append((len(word), word))
return result_list

Create a Pipeline using a local runner for execution.
with beam.Pipeline('DirectRunner') as p:

create a PCollection from the file contents.
in_pcoll = p | 'Read' >> ReadFromText('input.txt')

apply a ParDo to the PCollection
word_pcoll = in_pcoll | 'ParDo' >> beam.ParDo(ComputeWordLengthFn())

apply GroupByKey to the PCollection
out_pcoll = word_pcoll | 'GroupByKey' >>|beam.GroupByKey()|

write PCollection to a file
out_pcoll | 'Write' >> WriteToText('output.txt')

Hands-on Exercises

git clone https://github.com/cs327e-fall2019/snippets.git

Best Practices:

1. Know basic UNIX commands (e.g. 1s, cp, mv, rm, etc.)

2. Start with some initial working code. See snippets repo for working examples.

3. Test and debug each new PTransform block before adding more logic.

4. Write temporary and final PCollections to log files.

5. If you get stuck, go to OHs. If you can’t make OHs, make an appointment with
one of the TAs.

6. Start assignments early. The Beam Python documentation is sparse and

learning Beam requires patience, perseverance, and experimentation.

https://github.com/cs327e-fall2019/snippets

Milestone 5

1) Requirements: assignment sheet

2) Data Modeling Questions: sign-up sheet

3) Beam Setup Questions: sign-up sheet

http://www.cs.utexas.edu/~scohen/milestones/Milestone5.pdf
https://docs.google.com/spreadsheets/d/1vBrFCqeVQEHdNILIza_wKE63uh4OrODIUFysNTZaCjk/edit#gid=47690001
https://docs.google.com/spreadsheets/d/1vBrFCqeVQEHdNILIza_wKE63uh4OrODIUFysNTZaCjk/edit#gid=47690001

