
CS 327E Class 10
Nov 20, 2020

Announcements

● Feedback on Test 3

● Extra credit opportunities

● Milestones 3 and 4

Motivations for Dataflow

● A system for processing arbitrary computations on large

amounts of data

● Can process batch data and streaming data using the same

code

● Uses Apache Beam, an open-source programming model

● Designed to be very scalable, millions of QPS

Apache Beam Concepts

● A model for describing data and data processing operations:

○ Pipeline: a data processing task from start to finish

○ PCollection: a collection of data elements

○ PTransform: a data transformation operation

● Supported languages: Java, Python and Go

● Executed in the cloud on Dataflow, Spark, Flink, etc.

● Executed locally with Direct Runner for dev/testing

Beam Pipeline

● Pipeline = A directed acyclic graph where the nodes are

PTransforms and the edges are PCollections
● General Structure of a Pipeline:

○ Reads one or more data sources as input PCollections

○ Applies one or more PTransforms on PCollections

○ Outputs resulting PCollection as one or more data sinks

● Executed as a single unit

● Runs in batch or streaming mode

PCollection

● A collection of data elements, either bounded or unbounded

● Elements can be made up primitive and complex types

● Distributed across machines

● PCollections are immutable

● Created from a data source or a PTransform

● Written to a data sink or passed to another PTransform

PTransforms
All operations on data are different kinds of PTransforms

● Element-wise:

○ maps 1 input to (1, 0, many) outputs

○ Examples: ParDo, Map, FlatMap
● Aggregation:

○ reduces many inputs to (1, fewer) outputs

○ Examples: GroupByKey, CoGroupByKey, Flatten
● Composite: combines element-wise and aggregation

○ GroupByKey -> ParDo

PTransform Properties

● Serializable

● Parallelizable

● Idempotent

ParDo Transform

● ParDo = "Parallel Do"

● Maps 1 input to (0, 1, many) outputs

● Takes as input a PCollection

● Applies the user-defined ParDo to the input

● Outputs results as new PCollection

● Typical usage: filtering, formatting, extracting parts of data,

performing computations on data elements

Hello World Example 1

class Multiply(beam.DoFn):
 def process(self, element):
 return [element * 10]

p = beam.Pipeline('DirectRunner', options=opts)

in_pcoll = p | beam.Create([1, 2, 3, 4, 5])

out_pcoll = in_pcoll | 'Multiply' >> beam.ParDo(Multiply())

out_pcoll | 'Write results' >> WriteToText('multiplied.txt')

GroupByKey Transform

● Input: PCollection where each element is a (key, value) pair

● Groups the values by unique key

● Output: PCollection where each element is a (key, list(value)) pair

('Nicole', '100 Avenue A')
('Erik', '21 Guadalupe')
('Sameer', '7071 Hamilton')
('Nicole', '200 Avenue B')

('Nicole', ['100 Avenue A', '200 Avenue B'])
('Erik', '21 Guadalupe')
('Sameer', '7071 Hamilton')

GroupByKey

Hello World Example 2
class SplitWords(beam.DoFn):
 def process(self, element):
 results = []
 words = element.split()

 for word in words:
 results.append((word, 1))

 return results

p = beam.Pipeline('DirectRunner', options=opts)

in_pcoll = p | beam.Create(['here are some words', 'here a few more words'])

split_pcoll = in_pcoll | 'Split Words' >> beam.ParDo(SplitWords())

out_pcoll = split_pcoll | 'Group Words' >> beam.GroupByKey()

Beam + Dataflow Setup
https://github.com/cs327e-fall2020/snippets/wiki/Apache-Beam-and-Dataflow-Setup-Guide

https://github.com/cs327e-fall2020/snippets/wiki/Apache-Beam-and-Dataflow-Setup-Guide

Hands-on Exercises
git clone https://github.com/cs327e-fall2020/snippets.git

How to develop Beam pipelines:
1. Start with a working code example and incrementally add to it.
2. Test and debug one transform at a time.
3. Write temporary and final PCollections to log files.
4. You may encounter jupyter notebook issues.
5. Start on the assignment as early as possible. The Beam Python

documentation is sparse and learning Beam requires patience,
perseverance, and experimentation.

6. Piazza won’t be a good way to debug.
7. If you get stuck, go to OHs. If you can’t make OHs, make an appointment with

the TAs.

Milestone 3

http://www.cs.utexas.edu/~scohen/milestones/Milestone3.pdf

http://www.cs.utexas.edu/~scohen/milestones/Milestone3.pdf

