
Class 2 MySQL
Elements of Databases

Sept 3, 2021

Relational Data Model

• Database == Collection of relations
• Relation == A table with columns (attributes) and rows (tuples)
• Column properties: named, domain, unordered
• Row properties: single-valued attributes, unique, unordered

 How do we enforce a unique row constraint?

• Referential integrity: Every non-null foreign key must match an
existing primary key value.

 Notation: Customer(id, fname, lname, address ...)
 Order(orderno, custid, date, channel ...)

Simple Select Statements

SELECT c1, c2, c3, cn

FROM T1

WHERE c1 > 100 AND c2 = 'XYZ'

ORDER BY c3, c4;

SELECT c1, c2, c3, cn

FROM T1

WHERE c1 IS NOT NULL OR (c2 = 'XYZ' AND c3 = 'ABC')

ORDER BY c3 DESC;

Simple Create, Insert, Update, Delete Statements

CREATE TABLE T1 (c1 INT PRIMARY KEY,
 c2 VARCHAR(30) NOT NULL,
 c3 VARCHAR(30));

INSERT INTO T1 (c1, c2, c3) VALUES (1, 'Austin',
 'TX');

UPDATE T1 SET c2 = 'New York City', c3 = 'NY'
 WHERE c1 = 1;

DELETE FROM T1 WHERE c3 IN ('NY' 'TX', 'CA');

MySQL Overview

• It’s been around a long time
• Simple and easy-to-use
• Open-source software (commercialized by Oracle)
• Implements the relational model
• Designed for storing structured data
• Feature-rich SQL support
• Supports many languages
• Small to medium size data (< TB storage)
• Low to moderate QPS of reads and writes (10K)
• Scale reads through read replicas
• Scale writes through sharding (e.g. Vitess)

https://vitess.io/docs/overview/architecture/

Instapoll on today’s setups

MySQL Guide:
https://github.com/cs327e-fall2021/snippets/wiki/MySQL-Setup-Guide

Jupyter Guide:

https://github.com/cs327e-fall2021/snippets/wiki/Jupyter-Setup-Guide

https://github.com/cs327e-fall2021/snippets/wiki/MySQL-Setup-Guide
https://github.com/cs327e-fall2021/snippets/wiki/Jupyter-Setup-Guide

MySQL Code Lab:

• Clone snippets repo
• Open mysql notebook
• Create database
• Create tables
• Populate tables
• Check tables
• Remove header row
• Add primary keys
• Add foreign key
• Test foreign key

https://github.com/cs327e-fall2021/snippets
https://github.com/cs327e-fall2021/snippets/blob/main/mysql.ipynb

College Database Schema

Student(sid, fname, lname, dob, status)

Class(sid, cno, cname, credits, grade)

Instructor(tid, name, dept)

Teaches(tid, cno)

Practice Problems

Who takes CS327E or CS329E?

Who takes CS327E and CS329E?
Student(sid, fname, lname, dob, status)

Class(sid, cno, cname, credits, grade)

Instructor(tid, name, dept)

Teaches(tid, cno)

 Is this query a correct implementation?

SELECT sid
FROM Class
WHERE cno = 'CS327E'
 AND cno = 'CS329E'

Student(sid, fname, lname, dob, status)

Class(cno, cname, credits)

Instructor(tid, name, dept)

Teaches(tid, cno)

Second Question

 Who takes CS327E and CS329E?

Relational Data Modeling
● Entity: A real-world object
● Usually a noun
● Common examples: Person, Team, Product, Order, Shipment

Analogies with OOP:
● Entity: analogous to class
● Record: analogous to objects
● Attribute: analogous to members of an object

Questions:
● How do we represent relationships between entities?
● Can entities have methods in addition to attributes?

Design Guidelines
1. A table represents a single entity type or a m:n relationship.

2. The fields of a table represent the attributes of the entity type or attributes of a m:n

 relationship.

3. Each field in a table is assigned a data type that best fits its domain of values.

4. Each table has a Primary Key (PK) constraint which is made up of one or more

 fields that uniquely represent each entity in that table.

5. 1:1 and 1:m relationships are represented as a Foreign Key (FK)

 relationship, in which the child table has a FK constraint on the field(s) that

 reference its parent’s PK fields.

Back to our college schema:

● Insert Anomaly
● Update Anomaly
● Delete Anomaly

Remodeled college schema

Common Transforms

● CREATE TABLE T2 AS SELECT a, b, c FROM T1;

● SELECT a, b, c FROM T1
UNION [DISTINCT]
SELECT x AS a, y AS b, z AS c FROM T2;

● SELECT a, b, c, 'some string' AS s FROM T1
UNION ALL
SELECT d, e, f, 'some string' AS s FROM T2;

Project 1

http://www.cs.utexas.edu/~scohen/projects/Project1.pdf

http://www.cs.utexas.edu/~scohen/projects/Project1.pdf

