Class 7 Neo4j

Elements of Databases
Oct 29, 2021

Instapolls

* Check your GCP credit balance
* Check your Neo4j setup

Announcements

* Review session next Friday at 4pm
« Exam 2 on Nov. 12th at 4pm

Exam rules:

60-minute exam

Open-note and open-book

Piazza will be disabled during exam

May not consult with any human in any form

A A O i T i

Why Neo4j?

Node

RELATIONSHIP_TYPE

property key: value

property key: value

Labeled property graph data model
Flexible schema
Highly connected data

Declarative, SQL-inspired query language (Cypher)

Open-source, sponsored by Neo4j Inc.

Rich plugin and extension language (similar to Postgres)

ACID-compliant transactions

Distributed architecture for scaling reads
Visualization tools (Neo4j Browser, Bloom)
Optimized for graph traversals

Available as a cloud offering (Aura)
Limited scalability for writes (no sharding)

Node

property key: value

Neo4j’s Data Model lllustrated

name: DB Editor
name: Ethan

HAS_PERMISSION
HAS_ROLE IN_GROUP HAS_| ROLE

name: jobs.list
7 name: jobs.get

name: jobs.create

name: Project Owner

name: Data Engineer

‘F

HAS_PERMISSION

name: storage.list
name: storage.create

name: storage.delete

3 |
—

“Hello World” example in Cypher

CREATE () ;

CREATE (:Person);

CREATE (:Place);

CREATE (:Person {name: "Ethan"})-[:LIVES IN]->(:Place {city: "Austin"});

MATCH (n) RETURN n;

MATCH ()-[r]->()
RETURN type(r), COUNT (r);

MATCH (p)-[r:LIVES IN]->(c)
WHERE p.name = "Ethan"

AND c.city = "Austin"
RETURN p, r, c;

Creating the Nodes

name: Ethan name: DB Editor
name jobs.list
name: Project Owner name jobs.get

name: jobs.create
name: Data Engineer

name: storage.list ﬁ
name: storage.create

name: storage.delete

CREATE
CREATE
CREATE

CREATE
CREATE
CREATE

:Permission
:Permission
:Permission

:Permission
:Permission
:Permission

CREATE (:Person {name: "Ethan", email: "ethan@utexas.edu"}):;
CREATE (:Group {name: "Data Engineer", owner: "Alex"});
CREATE (:Role {name: "Project Owner", type: "GCP"});

CREATE (:Role {name: "DB Editor", type: "MySQL"});

{name:
{name:
{name:

{name:
{name:
{name:

"jobs.list"})
"jobs.get"})
"jobs.create"});

"storage.list"});
"storage.create"});
"storage.delete"});

Creating the Relationships

name: Ethan R ‘ name: DB Editor

HAS_| ROLE IN_GROUP HAS _| ROLE

name jobs.list
name: Project Owner name jobs.get

name: jobs.create
name: Data Engineer

name: storage.list ‘r
name: storage.create

name: storage.delete

MATCH (p:Person {name: "Ethan"})
MATCH (r:Role {name: "Project Owner"})
CREATE (p)—[:HAS_ROLE]—>(r);

MATCH (p:Person {name: "Ethan"})
MATCH (g:Group {name: "Data Engineer"})
CREATE (p)-[:IN GROUP]->(q);

MATCH (g:Group {name: "Data Engineer"})
MATCH (r:Role {name: "DB Editor"})
CREATE (g)-[:HAS ROLE]->(r);

MATCH (p)-[h]->(r) RETURN p, h, r;
MATCH (p:Person)-[h]->(r:Role)

WHERE r.name = "Project Owner"
RETURN p, h, r;

Creating the Relationships (cont.)

— @ e N MATCH (r:Role {name: "Project Owner"})
MATCH (p:Permission {name: "storage.list"})
wshoe Worour wasdoie CREATE (r)-[:HAS PERMISSION]->(p);
hame prqeaoWﬂer mlmbjlbtgt MATCH (r:Role {name: "Project Owner"})
name: Data Engineer ame:jobs create MATCH (p:Permission {name: "storage.create"})
Mwﬁmmw CREATE (r)-[:HAS PERMISSION]->(p);

e siorge e(. MATCH (r:Role {name: "Project Owner"})
. MATCH (p:Permission {name: "storage.delete"})
CREATE (r)—[:HAS_PERMISSION]—>(p);

name: storage.delete

MATCH (r:Role)-[h]->(p)
WHERE r.name = "Project Owner"
RETURN r, h, p;

Creating the Relationships (cont.)

name: DB Editor
name: Ethan
HAs PERMISSION

HAS ROLE IN GROUP HAS _| ROLE

name jobs.list
name: Project Ovvner name jobs.get

name: jobs.create
HAS _| PERMISSION

name: storage.list "
name: storage.create

name: storage.delete

name: Data Engineer

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "Jjobs.list"})
CREATE (r)—[:HAS_PERMISSION]—>(p);

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.get"})
CREATE (r)—[:HAS_PERMISSION]—>(p);

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "Jjobs.create"})
CREATE (r)—[:HAS_PERMISSION]—>(p);

MATCH (r:Role)-[h]->(p)
WHERE r.name = "DB Editor"
RETURN r, h, p;

Visualizing the Graph

C 0 @ localhost

Database Information

Use database

neo4;j - default

Node Labels

Relationship Types

Property Keys

Connected as

ame: neodj

MATCH (n) RETURN n LIMIT 25
Growp) €
WAS PE\‘”“SS\ON
jobs.cre...

Displaying 10 nodes, 9 relationships.

HAS_PERMISSION

Q @ Incognito
B3 Other Bookmark

storage....
z
S storage....
% g
k7! s
D g
2 & >
NS
T«])
£ N
&
&
Project
HAS pERMISSION Owner

Counting Nodes and Relationships

MATCH (n:Person) MATCH ()-[r:HAS ROLE]->()
RETURN count (n) ; RETURN count (r) ;

MATCH (n) MATCH ()-[r]->()

RETURN distinct labels(n), count(n); RETURN type (r), count(r);
F—————————————————————————— + Pt R R i T e O i S T o o R T 2 £ e +
l labels(n) | count(n) l | type(r) | count(r) |
| ["Person"] | 1 | +—:—_-_——_-: —————————————————— £
| ["Group"] |1 | | "IN _GROUP | 1 |
| ["Permission"] | 6 | | "HAS PERMISSION" | 6 |

Querying the Graph

name: DB Editor

name: Ethan @

HAS_ROLE

name: Project Owner @

HAS_PERMISSION
HAS_ROLE

IN_GROUP

name: jobs.list
7 name: jobs.get
@ name: jobs.create

MATCH (p:Person)-[r*]->(m:Permission) hame: Data Engineer
WHERE p.name = "Ethan" HAS_PERMISSION
RETURN r, m.name
ORDE R BY m; name: storage.list ‘ﬁ
name: S[O(age.c'eale
name: storage.delete

Bt i ————— +
| | m.name |
i —————— +

[[: IN_GROUP] P | HAS_ROLE 1, [HAS_PERMISSION]] i jObS .11st"

[[: IN_GROUP] r [HAS__ROLE s [HAS_PERMISSION]] = jObS .get Y

|

| [[:IN_GROUP],
| [[:HAS ROLE],
| [[:HAS ROLE],
| [[:HAS ROLE],

[:HAS ROLE], [:HAS PERMISSION]]
[:HAS PERMISSION]]
[:HAS PERMISSION]]

[:HAS PERMISSION]]

"storage.list"
"storage.create"

|
|
"jobs.create" |
|
|
"storage.delete" |

If Ethan had many more permissions, we would add a LIMIT clause to the end of the query.
If Ethan had duplicate permissions, we would use DISTINCT m in the RETURN clause.

Querying the Graph

HAS_ROLE

MATCH (p:Person)-[r*1l]->(m:Permission)
WHERE p.name = "Ethan"

RETURN r, m.name

ORDER BY m;

name: Project Owner Role

HAS_PERMISSION

I r l m.name | name: storage.list ‘?
o s e e s s e s e s + name: storage.create @

+ + name: storage.delete

MATCH (p:Person)-[r*1l..2]->(m:Permission)
WHERE p.name = "Ethan"

RETURN r, m.name

ORDER BY m;

e e e o e L e e e A L e +
| ¢ | m.name |
Fm————————— +
[[:HAS_ROLE], [:HAS PERMISSION]]	"storage.list"
[[:HAS_ROLE], [:HAS PERMISSION]]	"storage.create"
[[:HAS_ROLE], [:HAS_PERMISSION]]	"storage.delete"

IN_GROUP HAS_ROLE

name: Data Engineer

name: DB Editor

HAS_PERMISSION

name: jobs.list
7 name: jobs.get
@ name: jobs.create

Updating Nodes

MATCH (n:Person {name: "Ethan"})

SET n.dob = "10-19-2000",
n.occupation = "Student"

RETURN n.name, n.dob, n.occupation;

MATCH (n {name: "Ethan"})
SET n:Principal
RETURN n.name, labels(n) AS labels;

| n.name | n.dob | n.occupation |

i i R i S S i S S +

| "Ethan" | "10-19-2000" | "Student" |

e e e Gl +
A e S +
| n.name | labels |
S S S +
| "Ethan" | ["Person", "Principal"] |

Updating Relationships

MATCH (n:Role {name: "DB Editor"}) HAS_PERMISSION
MATCH (p:Permission {name: "jobs.create"}) lztu"irzagﬁtel 1§A2Y9'2021
MERGE (n)-[r:HAS PERMISSION]->(p) B

ON MATCH SET r.start date = "10-29-2021",

r.duration = "1 DAY"_ name: jobs.create
RETURN n.name, type(r), r.start date, r.duration;

Deleting Nodes and Relationships

MATCH (p:Person)-[r]->()
DELETE r;

MATCH (p:Person)
DELETE p;

MATCH (n)
DETACH DELETE n;

neo4j@neo4j> MATCH (n)
DETACH DELETE n;
0 rows available after 7 ms, consumed after another 0 ms
Deleted 10 nodes, Deleted 9 relationships
neo4j@neo4j>

Neo4j Code Lab

* Clone snippets repo
* Open neo4j notebook

* Create movie and actor graph
* Run some queries over graph

https://github.com/cs327e-fall2021/snippets
https://github.com/cs327e-fall2021/snippets/blob/main/neo4j.ipynb

Practice Problem

Translate the following scenario into a Cypher query:

Which persons acted in their own movie?

Return the person’s name, movie title, and role they played in the
movie which they directed.

Order the results by person’s name.

Project 7

http://www.cs.utexas.edu/~scohen/projects/Project7.pdf

http://www.cs.utexas.edu/~scohen/projects/Project7.pdf

