
Class 7 Neo4j
Elements of Databases

Oct 29, 2021

Instapolls

• Check your GCP credit balance
• Check your Neo4j setup

Announcements

• Review session next Friday at 4pm
• Exam 2 on Nov. 12th at 4pm

 Exam rules:
• 60-minute exam
• Open-note and open-book
• Piazza will be disabled during exam
• May not consult with any human in any form

Why Neo4j?

+ Labeled property graph data model
+ Flexible schema
+ Highly connected data
+ Declarative, SQL-inspired query language (Cypher)
+ Open-source, sponsored by Neo4j Inc.
+ Rich plugin and extension language (similar to Postgres)
+ ACID-compliant transactions
+ Distributed architecture for scaling reads
+ Visualization tools (Neo4j Browser, Bloom)
+ Optimized for graph traversals
+ Available as a cloud offering (Aura)
- Limited scalability for writes (no sharding)

Neo4j’s Data Model Illustrated

“Hello World” example in Cypher

CREATE ();
CREATE (:Person);
CREATE (:Place);
CREATE (:Person {name: "Ethan"})-[:LIVES_IN]->(:Place {city: "Austin"});

MATCH(n) RETURN n;

MATCH ()-[r]->()
RETURN type(r), COUNT(r);

MATCH (p)-[r:LIVES_IN]->(c)
WHERE p.name = "Ethan"
AND c.city = "Austin"
RETURN p, r, c;

Creating the Nodes

CREATE (:Permission {name: "jobs.list"});
CREATE (:Permission {name: "jobs.get"});
CREATE (:Permission {name: "jobs.create"});

CREATE (:Permission {name: "storage.list"});
CREATE (:Permission {name: "storage.create"});
CREATE (:Permission {name: "storage.delete"});

CREATE (:Person {name: "Ethan", email: "ethan@utexas.edu"});
CREATE (:Group {name: "Data Engineer", owner: "Alex"});
CREATE (:Role {name: "Project Owner", type: "GCP"});
CREATE (:Role {name: "DB Editor", type: "MySQL"});

Creating the Relationships
MATCH (p:Person {name: "Ethan"})
MATCH (r:Role {name: "Project Owner"})
CREATE (p)-[:HAS_ROLE]->(r);

MATCH (p:Person {name: "Ethan"})
MATCH (g:Group {name: "Data Engineer"})
CREATE (p)-[:IN_GROUP]->(g);

MATCH (g:Group {name: "Data Engineer"})
MATCH (r:Role {name: "DB Editor"})
CREATE (g)-[:HAS_ROLE]->(r);

MATCH (p)-[h]->(r) RETURN p, h, r;

MATCH (p:Person)-[h]->(r:Role)
WHERE r.name = "Project Owner"
RETURN p, h, r;

Creating the Relationships (cont.)

MATCH (r:Role {name: "Project Owner"})
MATCH (p:Permission {name: "storage.list"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role {name: "Project Owner"})
MATCH (p:Permission {name: "storage.create"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role {name: "Project Owner"})
MATCH (p:Permission {name: "storage.delete"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role)-[h]->(p)
WHERE r.name = "Project Owner"
RETURN r, h, p;

Creating the Relationships (cont.)
MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.list"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.get"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.create"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role)-[h]->(p)
WHERE r.name = "DB Editor"
RETURN r, h, p;

Visualizing the Graph

Counting Nodes and Relationships

MATCH (n:Person)
RETURN count(n);

MATCH (n)
RETURN distinct labels(n), count(n);

MATCH ()-[r:HAS_ROLE]->()
RETURN count(r);

MATCH ()-[r]->()
RETURN type(r), count(r);

Querying the Graph

MATCH (p:Person)-[r*]->(m:Permission)
WHERE p.name = "Ethan"
RETURN r, m.name
ORDER BY m;

If Ethan had many more permissions, we would add a LIMIT clause to the end of the query.
If Ethan had duplicate permissions, we would use DISTINCT m in the RETURN clause.

Querying the Graph
MATCH (p:Person)-[r*1]->(m:Permission)
WHERE p.name = "Ethan"
RETURN r, m.name
ORDER BY m;

MATCH (p:Person)-[r*1..2]->(m:Permission)
WHERE p.name = "Ethan"
RETURN r, m.name
ORDER BY m;

Updating Nodes

MATCH (n:Person {name: "Ethan"})
SET n.dob = "10-19-2000",
 n.occupation = "Student"
RETURN n.name, n.dob, n.occupation;

MATCH (n {name: "Ethan"})
SET n:Principal
RETURN n.name, labels(n) AS labels;

Updating Relationships

MATCH (n:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.create"})
MERGE (n)-[r:HAS_PERMISSION]->(p)
ON MATCH SET r.start_date = "10-29-2021",
r.duration = "1_DAY"
RETURN n.name, type(r), r.start_date, r.duration;

Deleting Nodes and Relationships
MATCH (p:Person)-[r]->()
DELETE r;

MATCH (p:Person)
DELETE p;

MATCH (n)
DETACH DELETE n;

Neo4j Code Lab

• Clone snippets repo
• Open neo4j notebook
• Create movie and actor graph
• Run some queries over graph

https://github.com/cs327e-fall2021/snippets
https://github.com/cs327e-fall2021/snippets/blob/main/neo4j.ipynb

Practice Problem

Translate the following scenario into a Cypher query:

Which persons acted in their own movie?

Return the person’s name, movie title, and role they played in the
movie which they directed.

Order the results by person’s name.

Project 7

http://www.cs.utexas.edu/~scohen/projects/Project7.pdf

http://www.cs.utexas.edu/~scohen/projects/Project7.pdf

