
CS 327E Final Project: Milestone 1, due Thursday 11/30

This milestone has 4 parts. Each part asks you to generate some sample test data and populate
a different database that we previously studied in this course. The next milestone will build upon
this work by joining tables that span multiple databases via Trino.

1. In JupyterLab, install a Python database connector for MySQL, Postgres, MongoDB, and
BigQuery:

pip install mysql-connector-python (documentation)
pip install psycopg[binary] (documentation)
pip install pymongo[srv](documentation)
pip install google-cloud-bigquery (documentation)

Part 1: MySQL

2. Create a Jupyter notebook and name it final-project-mysql.ipynb. Implement the
following logic in your notebook using a combination of SQL and Python code. To help
you get started, please review the code samples.

3. Create a database in MySQL with a table by the name of shopper. Define the shopper
table based on this description:

Constraint Column Name Description

Primary Key cust_id Customer Identifier

first_name First Name

last_name Last Name

company Company Name

street_1 Street Address 1

street_2 Street Address 2 (appt number, suite
number, box number)

city City Name

county County Name

state State or Province

zip Zip Code or Postal Code

phone_1 Phone Number 1

https://dev.mysql.com/doc/connector-python/en/
https://www.psycopg.org/psycopg3/docs/api/index.html
https://pymongo.readthedocs.io/en/stable/
https://cloud.google.com/python/docs/reference/bigquery/latest
https://github.com/cs327e-fall2023/snippets/blob/main/milestone1_mysql.ipynb


phone_2 Phone Number 2

email Email Address

Note: you’ll need to assign an appropriate data type to each field in the table.

4. Write a data generator that populates the shopper table with 50 unique records. Your
code should produce the following output:

50 records written into shopper table

Part 2: Postgres

5. Create a Jupyter notebook and name it final-project-postgres.ipynb. Implement
the following logic in your notebook using a combination of SQL and Python code. To
help you get started, please review the code samples.

6. Create a schema in Postgres with a table by the name of reservations. Define the
reservations table based on this description:

Constraint Column Description

Primary Key res_id Reservation Identifier

Join Key cust_id Customer Identifier

prp_nm Property Name

prp_ch Property Chain

adr_line_1 Street Address 1

adr_line_2 Street Address 2 (appt number, suite
number, box number)

city City Name

state State or Province Name

postal_cd Zip Code or Postal Code

lat Latitude

long Longitude

https://github.com/cs327e-fall2023/snippets/blob/main/milestone1_postgres.ipynb


Join Key cnt_code Country Code

arr_date Arrival Date

dep_date Departure Date

pmt_amt Payment Amount

Note: you’ll need to assign the appropriate data type to each field in the table.

7. Write a data generator that populates the reservations table with 100 unique records.
Your code should produce the following output:

100 records written into reservations table

Part 3: MongoDB

8. Create a Jupyter notebook and name it final-project-mongodb.ipynb. Implement
the following logic in your notebook using a combination of SQL and Python code. To
help you get started, please review the code samples. Remember to grant your
JupyterLab VM access to your shared MongoDB cluster on Atlas.

9. Create a database in MongoDB with a collection by the name of ticketing. Populate the
ticketing collection with 100 unique records that conform to this schema:

Constraint Field Description

Primary Key tck_id Ticket Identifier

Join Key cust_id Customer Identifier

airline Airline Name

flight_nm Flight Number

dep_airport Departure Airport

arr_airport Arrival Airport

dep_date Departure Date

dep_time Departure Time

arr_date Arrival Date

https://github.com/cs327e-fall2023/snippets/blob/main/milestone1_mongodb.ipynb


arr_time Arrival Time

stops Number of stops

tik_amt Ticket Amount / Price

Join Key curr_code Currency Code

Note: you’ll need to assign appropriate types to each field in the collection.

Your code should produce the following output:

100 documents written into ticketing collection

Part 4: BigQuery

10. Create a Jupyter notebook and name it final-project-bigquery.ipynb. Implement
the following logic in your notebook using a combination of SQL and Python code. To
help you get started, please review the code samples.

11. Create a dataset in BigQuery with a table by the name of currency. Define the currency
table based on this description:

Constraint Column Description

Primary Key and Join Key curr_code Currency Code

curr_name Currency Name

Join Key cntry_code Country Code

cntry_name Country Name

Note: you’ll need to assign an appropriate data type to each field in the table.

12. Write a data generator that populates the currency table with 30 unique records.

Your code should produce the following output:

30 records written into currency table

https://github.com/cs327e-fall2023/snippets/blob/main/milestone1_bigquery.ipynb


Additional Notes

● Customer identifiers need to match up between shopper, reservations, and ticketing
tables so that they can be joined.

● Country codes need to match up between the reservations and currency tables so that
they can be joined.

● Currency codes need to match up between the ticketing and currency tables so that they
can be joined.

● Address fields can be inconsistent within the same record. For example, a county can be
unrelated to the city of the same address.

● Use the Faker library to generate person names, addresses, currencies, etc.
● Use faker_airtravel to generate airports and stops.
● Use randrange() and timedelta() to generate date ranges.

https://faker.readthedocs.io/en/master/
https://pypi.org/project/faker_airtravel/


CS 327E Final Project Milestone 1 Rubric
Due Date: 11/30/23

Code block that creates the shopper table in a MySQL database.
-1 incorrect table name
-1 for each missing column or incorrect column name
-1 for each field type mismatch (e.g. assigned VARCHAR instead of CHAR, etc.)
-1 incorrect primary key specification (e.g. sequence generator missing or incorrect)
-1 missing or incorrect table drop if exists

10

Code block that generates the shopper records and writes them into previously created
table in MySQL.

-3 code has syntax errors and/or doesn’t run
-3 Faker library not used to generate names, addresses, phone numbers, etc.
-1 for each value missing from insert statement
-1 incorrect output produced
-1 missing try/except blocks

15

Code block that creates the reservations table in a Postgres database.
-1 incorrect table name
-1 for each missing column or incorrect column name
-1 for each field type mismatch (e.g. assigned VARCHAR instead of CHAR, etc.)
-1 incorrect primary key specification (e.g. sequence generator missing or incorrect)
-1 missing or incorrect table drop if exists

10

Code block that generates the reservations records and writes them into previously
created table in Postgres.

-3 code has syntax errors and/or doesn’t run
-3 Faker library not used to generate names, addresses, phone numbers, etc.
-1 for each value missing from insert statement
-1 incorrect output produced
-1 missing try/except blocks

15

Code block that generates the ticketing documents and writes them into the ticketing
collection in a MongoDB database.

-3 code has syntax errors and/or doesn’t run
-1 incorrect collection name
-1 for each missing field or incorrect field name
-1 for each field type mismatch (e.g. used a String instead of Date, etc.)
-3 Faker library not used to generate airports, stops
-1 for each value missing from insert statement
-1 incorrect output produced
-1 missing try/except blocks

25

Code block that creates the currency table in a BigQuery dataset.
-1 incorrect table name
-1 for each missing column or incorrect column name
-1 missing or incorrect table replace statement

7



Code block that generates the currency records and writes them into previously created
BigQuery table.

-3 code has syntax errors and/or doesn’t run
-3 Faker library not used to generate currencies and/or countries.
-1 for each value missing from insert statement
-1 incorrect output produced
-1 missing try/except blocks

10

Referential integrity between the previously created tables across MySQL, Postgres,
MongoDB, and BigQuery.

-2 values in postgres.reservations.cust_id don’t exist in mysql.shopper.cust_id
-2 values in postgres.reservations.cnt_code don’t exist in bigquery.currency.cnt_code
-2 values in mongodb.ticketing.cust_id don’t exist in mysql.shopper.cust_id
-2 values in mongodb.ticketing.curr_code don’t exist in bigquery.currency.curr_code

8

final-project-mysql.ipynb, final-project-postgres.ipynb,
final-project-mongodb.ipynb, and final-project-bigquery.ipynb pushed to
your group’s private repo on GitHub. Your milestone will not be graded without this
submission.

Required

submission.json submitted into Canvas. Your project will not be graded without this
submission. The file should have the following schema:

{
"commit-id": "your most recent commit ID from GitHub",
"project-id": "your project ID from GCP"

}

Example:

{
"commit-id": "dab96492ac7d906368ac9c7a17cb0dbd670923d9",
"project-id": "some-project-id"

}

Required

Total Credit: 100


