Class 3 Postgres

Elements of Databases
Sep 8, 2023

Postgres environment on Google Cloud

) Google Cloud Platform

h
You Managed

Notebook

(runs psql cli) Postgres
15

Environment built by following our Postgres and Jupyter setup guides (assigned as homework).

https://github.com/cs327e-spring2022/snippets/wiki/Postgres-Setup-Guide
https://github.com/cs327e-spring2022/snippets/wiki/Jupyter-Setup-Guide

Postgres Overview:

“The world’s most advanced open source database”
Implements relational model

ANSI SQL compliant

Flexible extension mechanism

Code base used by research and commercial projects
Moderately easy to use

Used for OLTP + (small) OLAP workloads

Performs on small - medium size data (< TB)
Performs on small - medium QPS (< 50K)

Scale reads with read replicas

Scale writes with application-level sharding

Popular extensions:
e postgres_fdw
e pgAudit
e HypoPG
e pg_partman

https://www.postgresql.org/docs/13/postgres-fdw.html
https://www.pgaudit.org/
https://github.com/HypoPG/hypopg
https://github.com/pgpartman/pg_partman

Postgres Code Lab:

* Clone snippets repo
* Open postgres notebook

* Create schema

* Create tables in schema
* Populate tables

* Create Primary Keys

* Create Foreign Keys
 Remodel tables

* Create Primary Keys

* Fix data anomalies

* Create Foreign Keys

https://github.com/cs327e-fall2023/snippets
https://github.com/cs327e-fall2023/snippets/blob/main/postgres.ipynb

Back to our database example...

College data model v1

Student Class
PK [sid CHAR PK, sid CHAR
fname VARCHAR PK cho CHAR
Iname VARCHAR chame VARCHAR
dob DATE credits INT
status CHAR grade CHAR
Instructor Teaches
PK [tid CHAR < PK, FK |tid CHAR
name VARCHAR PK, cho CHAR
dept VARCHAR L

Two design approaches:

Bottom-up: Try to create
the missing FKs,
redesign tables until all
FK violations have been
resolved.

Top-down: Identify core
business concepts or
entities, model them in
according to domain
requirements while
following design
guidelines.

Top-down approach
example

Domain Requirements:
1. A Student can take zero or more Classes.
2. A Class can have zero or more Students in it.

3. An Instructor can teach zero or more Classes.

4. A Class can be taught by zero or more
Instructors.

Design guidelines:

A table represents a single entity type or a m:n
relationship (if junction table).

2. The fields represent the attributes of an entity
type or attributes of a m:n relationship.

3. Each field is assigned a data type that best fits
its domain of values.

4. Each table has a Primary Key (PK) constraint
which is made up of one or more fields that uniquely
represent each entity in that table.

5. 1:1 and 1:m relationships are represented as a
Foreign Key (FK) relationship, in which the child
table has a FK constraint on the field(s) that

reference its parent’s PK fields.

Referential integrity violations

College data model v1

Student Class
PK |sid CHAR ———<] PK, FK |sid CHAR
fname VARCHAR —— PK cho CHAR
Iname VARCHAR chame VARCHAR
dob DATE credits INT
status CHAR grade CHAR
Instructor Teaches
PK [tid CHAR PK, FK |tid CHAR
name VARCHAR ~—< PK, FK |cno CHAR
dept VARCHAR

College database anomalies:
- FKon Class.sid
- FKon Teaches.cno

Data anomaly types:
- Insert anomalies
- Update anomalies
- Delete anomalies

Remodeled college database

College data model v2

Student
PK |sid CHAR
fname VARCHAR
Iname VARCHAR
dob DATE
status CHAR

Takes Class
< PK, FK |sid CHAR PK |[cno CHAR
PK, FK [cno CHAR >—J—'7 cname VARCHAR
grade CHAR credits INT
Instructor Teaches
PK |tid CHAR [<| PK, FK |tid CHAR
name CHAR L PK, FK |cno CHAR >—

dept VARCHAR

Implementation Techniques

Use these common data transforms to remodel the tables with standard
SQL.

e CREATE TABLE T2 AS SELECT a, b, ¢ FROM T1;

e SELECT a, b, ¢ FROM T1
UNION [DISTINCT]
SELECT x AS a, y AS b, z AS ¢ FROM T2Z2;

e SELECT a, b, ¢, 'some string' AS s FROM T1
UNION ALL
SELECT d, e, f, 'some string' AS s FROM T2;

Join Queries

* Inner joins
« Natural joins

e Queries that use a JOIN operation o
. « Quter joins
e Several flavors of joins _ o
L . * Right joins
e Pervasive in relational database workloads .
. . « Left joins
e Many optimizations to run efficiently . .
* Full joins

« Self joins

Inner joins (and Natural joins)

SELECT ~*

FROM T1

[INNER] JOIN T2
ON Tl.cl = T2.cl;
SELECT a.cl, b.cl
FROM T1 a

[INNER] JOIN T1 b
USING cl;

Employee Department
empid | emp_name | emp_dep depid dep_name
2 Mike 1 1 Sales
23 Dave 2 2 Product
3 Sarah 3 Research
5 Jim 4 Engineering

Sunil 5 HR
37 Morgan

SELECT emp_name, dep_name
FROM Employee JOIN Department
ON emp_dep = depid

Result Table
emp_name dep_name
Mike Sales
Dave Product
Jim Engineering
Sunil Sales
Morgan Engineering

Inner Joins

SELECT *

FROM T1

[INNER] JOIN T2 ON T1
[INNER] JOIN T3 ON T2

SELECT *

FROM T1

[INNER] JOIN T2 ON T1
[INNER] JOIN T3 ON T2

.cl
.C2

.cl
.C2

T2

= T2
T3.

.cl
= T3.

c2;

.cl AND T1

c2;

.C2

T2 .c2

Employee Department
Left O u te r J O | n S empid | emp_name | emp_dep depid | dep_name
2 Mike 1 Sales
23 Dave 2 Product
SELECT * 3 Sarah 3 Research
FROM T1 En L D
LE FT [OUTER] JO IN T 2 37 Morgan

ON Tl.cl = T2.cl;

SELECT emp_name, dep_name

FROM Employee LEFT JOIN Department ON emp_dep = depid
ORDER BY emp_name

Result Table
emp_name dep_name

Dave Product

Jim Engineering

Mike Sales
Morgan Engineering

Sarah

Sunil Sales

Employee Department
R i g h t O u t e r J O i n S empid | emp_name | emp_dep depid | dep_name
2 Mike 1 1 Sales
23 Dave 2 2 Product
3 Sarah 3 Research
SELECT * 5 Jim 4 4 Engineering
6 Sunil 1 5 HR
FROM T 1 37 Morgan 4
RIGHT [OUTER] JOIN T2
. SELECT emp_name, dep_name
ON Tl.cl = T2.cl ’ FROM Employee RIGHT JOIN Department ON emp_dep = depid
ORDER BY dep_name, emp_name
Result Table
emp_name dep_name
Jim Engineering
Morgan Engineering
HR
Dave Product
Research
Mike Sales
Sunil Sales

Full Outer Joins

SELECT ~*

FROM T1

FULL [OUTER] JOIN T2
ON Tl.cl = T2.cl;

Employee Department
empid | emp_name | emp_dep depid dep_name
2 Mike 1 1 Sales
23 Dave 2 2 Product
3 Sarah 3 Research

Jim 4 4 Engineering
Sunil 1 5 HR
37 Morgan 4

SELECT emp_name, dep_name

FROM Employee FULL JOIN Department ON emp_dep = depid

ORDER BY dep_name, emp_name

Result Table
emp_name dep_name
Jim Engineering
Morgan Engineering
HR
Dave Product
Research
Mike Sales
Sunil Sales
Sarah

Self Joins

SELECT a.cl, b.cl
FROM T1 a

[INNER] JOIN T1 Db
ON a.cl = b.cl;

Employee Employee
empid emp_name emp_dep dob empid emp_name emp_dep dob
2 Mike 1 1990-01-31 2 Mike 1 1990-01-31
23 Dave 2 1983-04-01 23 Dave 2 1983-04-01
3 Sarah 2001-08-02 3 Sarah 2001-08-02
Jim 4 1960-06-13 Jim 4 1960-06-13
Sunil 1 1979-10-19 Sunil 1979-10-19
37 Morgan 4 1990-01-31 37 Morgan 4 1990-01-31

SELECT el.emp_name, e2.emp_name, e2.dob

FROM Employee el JOIN Employee e2

ON el.empid != e2.empid AND el.dob = e2.dob

Result Table
el.emp_name | e2.emp_name dob
Mike Morgan 1990-01-31
Morgan Mike 1990-01-31

Exercise: SQL Joins

Who are the students who
take CS329E with Prof. Mitra?

For each student, return their
sid, first and last names, and
grade sorted by their sid.

Schema:
Student(sid, fname, Iname, dob, status)

Class(cno, cname, credits)
Instructor(tid, name, dept)
Takes(sid, cno, grade)
Teaches(tid, cno)

Project 2

https://www.cs.utexas.edu/~scohen/projects/project-2.pdf

https://www.cs.utexas.edu/~scohen/projects/project-2.pdf

