Lecture 15:
Query Processing & Indexes

Monday, March 23, 2015

Where we are

« Annotated slides on concurrency control
« HW 3 is over! Now focus on class project
« Today: Query processing and indexes

Class Project Schedule

* Project ERD and SQL feedback
— Replied to your emails with my comments

« Support sessions (only this week):
— SQL*Loader tutorial
— ¢Xx_Oracle catch-up (outstanding issues with HW #3)

« Upcoming schedule:
— Class presentations on 03/30, 04/01, and 04/06
« Groups 1-9o0n03/30
« Groups 10 — 18 on 04/01
« Groups 19 — 27 on 04/06
— Final submissions due on 04/06

Project Groups

Members

Matthew Egbom, Jewel Langevine, and Lerone Williams

Nathan Waters and Nur Ridzuan

Steve Franklin, Sadie Sublousky, and Tien-Yu Huang

Mills Hill

Alexander Crompton and Jacob Rachiele

Mitali Sathaye

Nikolaj Plagborg-Moller and Fabiana Latorre

Hannah Jane DeCiutiis, Kathryn McDermott, and Esther 5chenau

Khang Pham and Don Pham

Alexia Mercado and Cyndia Munoz

Thomas Johnson and John Loftin

Ross Yudkin, Kurt Probe, and Andrew Chang-Gu

Tianxiang Zhang, Xiaolin Lu, and Happy Situ

Kaitlin Vanderlaan, Julia Haschke, and Sarah Luna

Brian Huang, Sergio Mier, and Jun-Bo Shim

Jose Cortez, David Hernandez, and Tara Woolheater

Kerm Grier and Chrs Oballe

Matthew Jones, Thomas Reay, and Brooke Noble

Seata Moji and Alexander Thola

Hyun 5eo and Parth Patel

Yifang Peng and Jiannan Zhang

Dustin Dies, sreejon >en, and John Huynh

Cameron Miller, Jorge Paramo, and Kyle Kerr

Humza Rashid, Mark Slater, and Matthew Mcnair

Robert Mcneil and Zachary Williams

Bailey Lund, Kristine Chen, and Irene Jea

I MBI R BB PO [P e | ot | it | s [s | s | s | s | s | e m
ﬂmmhmm—nﬂmmﬂmmhwMAQ‘DW"‘J@W"&‘WM—"E

Damilola Shonaike and Bryan Landes

Project Presentation

10 minutes per project: 7 minutes presentation plus 3 minutes
for questions.

« Suggested content:
-describe the problem
-describe your approach
-give short demo
-discuss unexpected issues or problems
-discuss possible extensions

Final Project Submission

« A one page report on how the project was implemented and
how it works internally.

« End-user documentation (instructions and examples on how
somebody can use this project)

« Submit all code including dataset and test cases
« Submission deadline is 04/06 at 11:59pm

Query Processing without Indexes

Customers (id, first_name, last_name, address, city)

SELECT *
FROM Customers
WHERE city = ‘Austin’

Question: How do we evaluate this query?

Query Processing without Indexes

Customers (id, first_name, last_name, address, city)

SELECT *
FROM Customers
WHERE city = ‘Austin’

Question: How do we evaluate this query?

Problem: it takes too long to scan the entire Customers table

Query Processing without Indexes

Customers (id, first_name, last_name, address, city)

SELECT *
FROM Customers
WHERE city = ‘Austin’

Question: How do we evaluate this query?
Problem: it takes too long to scan the entire Customers table

Orders (id, order_date, ship_date, customer_id)

SELECT *

FROM Customers c, Orders o

WHERE c.id = o.customer _id

AND c.city = ‘Austin’

AND o.order_date BETWEEN ‘01-FEB-2015" AND 28-FEB-2015’

Questions: How do we evaluate this query? How can we speed this up?

Indexes

Critical to database systems

At least one index per table

They work “behind the scenes”

DBA looks at the workload and decides which indexes
to create (no easy answers)

Creating indexes can be an expensive operation
Query optimizer decides which indexes to use during
guery execution

Primary keys are automatically indexed

Indexes are updated during a transaction

Creating Indexes

Customers (id, first_name, last_name, address, city)

SELECT *
FROM Customers
WHERE city = 'Austin’

Problem: it takes too long to scan the entire Customers table

Solution: create an index on the city column

CREATE INDEX cust_city _indx ON Customers(city)

Now the above query runs much faster

Creating Indexes

Indexes can be created on more than one attribute:

Example:

CREATE INDEX cust_city _indx ON Customers (city, last_name)

Helps with:
SELECT *

FROM Customers

WHERE city = 'Austin' AND last_name = 'Johnson'

Even helps with:
SELECT *

FROM Customers
WHERE city = 'Austin’

B+ Tree

root

K interior nodes
< N

r

data

El Paso San Antonio _
entries

Austin

« B+ Tree = Balanced search tree

 The index is a separate file that is essentially organized as a table:
Index(search_key, *record(s))

« Given a search_key, the index returns pointers to the records

« Search_key can be an attribute, collection of attributes of
even an expression

Note that the search key is not the same as the key of a table

Why not use Binary Search Trees?

* Nodes in a binary tree only have a single key = too small for databases
» |n databases, index tree assumed to be on disk (not main memory)
 Want each node in the index to be as wide as a block

* Due to the cost of reading from disk, want to use the information
stored in a block as aggressively as possible

B+ Tree Example

Index file root
_ _ Houston
Find search key ‘Austin
Dallas El Paso \ > / Loredo San Antonio \ leaves
Austin El Paso Houston San Antonio
Dallas data records Loredo

Data file

Clustered Indexes

Datafile is sorted on the index attribute
Only one clustered index per table

Known as Index Organized Table (IOT) in Oracle

index

datafile

10

10

20

30

20

40

e —
—

30

50

40

60

70

50

80

[/ /1]

60

70

il

80

block

Unclustered Index

« Can have multiple unclustered indexes per table
« Separate index and data files

index datafile
20
10 block
10 30
20 —X
20 — 30
20
20 -
30 10
30 A
20 g 20
\ 10
30

Question: when does it make sense to ignore an unclustered index?

Query Processing with B+ Trees

Customers (id, first_name, last_name, address, city)
CREATE INDEX cust_city indx ON Customers(city)

SELECT last_name
FROM Customers
WHERE city = ‘Austin’

Question: How do we use the index to answer this query?

Query Processing with B+ Trees

Customers (id, first_name, last_name, address, city)

CREATE INDEX cust_city indx ON Customers(city)

SELECT last_name
FROM Customers
WHERE city = ‘Austin’

Question: How do we use the index to answer this query?

Answer:

« Start at the root of the B+ tree

« Search the index for the key ‘Austin’

« Once we find the key ‘Austin’, follow pointers to all data records

Question: Why do we have multiple pointers?

Query Processing with B+ Trees

Customers (id, first_name, last_name, address, city)

CREATE INDEX cust_last name_indx ON Customers(last_name)

SELECT *

FROM Customers

WHERE last_name

BETWEEN ‘Johnson’ AND ‘Jones’

Question: How can we use the index to answer this range query?

Query Processing with B+ Trees

Customers (id, first_name, last_name, address, city)

CREATE INDEX cust_last name_indx ON Customers(last_name)

SELECT *

FROM Customers

WHERE last_name

BETWEEN ‘Johnson’ AND ‘Jones’

Question: How can we use the index to answer this range query?

Answer:

« Start at the root of the B+ tree

« Search for the key ‘Johnson’, the lower bound of the range

« Once we've reached the key for ‘Johnson’, follow the pointers
to the right, examining their search keys until we’ve passed ‘Jones’,
the upper bound of the range

Query Processing with B+ Trees

Customers (id, first_name, last_name, address, city)

CREATE INDEX cust_last name_indx ON Customers(last_name)

SELECT DISTINCT last_name
FROM Customers

Question: How can we use the index to answer this query?

Query Processing with B+ Trees

Customers (id, first_name, last_name, address, city)

CREATE INDEX cust_last name_indx ON Customers(last_name)

SELECT DISTINCT last_name
FROM Customers

Question: How can we evaluate this query?

Answer:
« Scan the index for all the last name values.

Note: we don’t need to access the table to answer this query

Query Processing with B+ Trees

Customers (id, first_name, last_name, address, city)

CREATE INDEX cust_city last name_indx
ON Customers(city, last_name)

A composite index that is sorted first by city and second by last name.

SELECT * FROM Customers
WHERE city = ‘Austin’ AND last_name = ‘Johnson’

SELECT * FROM Customers WHERE city = ‘Austin’

SELECT * FROM Customers WHERE last_name = ‘Johnson’

We can use the index to answer to first two queries. We can’t use
It to answer the last query though because the last name values are
scattered across the index.

Optional References

* Douglas Comer. “The Ubiquitous B-Tree”. ACM Computing
Survey. 11(2): 121-137 (1979).

 R. Ramakrishnan and J. Gehrke. Database Management
Systems (3rd edition). McGraw-Hill 2003.

Next class

* Views
 Quiz #5

