
Lecture 15:

Query Processing & Indexes

Monday, March 23, 2015

Where we are

• Annotated slides on concurrency control

• HW 3 is over! Now focus on class project

• Today: Query processing and indexes

Class Project Schedule

• Project ERD and SQL feedback

– Replied to your emails with my comments

• Support sessions (only this week):

– SQL*Loader tutorial

– cx_Oracle catch-up (outstanding issues with HW #3)

• Upcoming schedule:

– Class presentations on 03/30, 04/01, and 04/06

• Groups 1 – 9 on 03/30

• Groups 10 – 18 on 04/01

• Groups 19 – 27 on 04/06

– Final submissions due on 04/06

Project Groups

Project Presentation

• 10 minutes per project: 7 minutes presentation plus 3 minutes

for questions.

• Suggested content:

 -describe the problem

 -describe your approach

 -give short demo

 -discuss unexpected issues or problems

 -discuss possible extensions

Final Project Submission

• A one page report on how the project was implemented and

how it works internally.

• End-user documentation (instructions and examples on how

somebody can use this project)

• Submit all code including dataset and test cases

• Submission deadline is 04/06 at 11:59pm

Query Processing without Indexes

SELECT *

FROM Customers

WHERE city = ‘Austin’

 Customers (id, first_name, last_name, address, city)

Question: How do we evaluate this query?

Query Processing without Indexes

SELECT *

FROM Customers

WHERE city = ‘Austin’

 Customers (id, first_name, last_name, address, city)

Question: How do we evaluate this query?

Problem: it takes too long to scan the entire Customers table

Query Processing without Indexes

SELECT *

FROM Customers

WHERE city = ‘Austin’

SELECT *

FROM Customers c, Orders o

WHERE c.id = o.customer_id

AND c.city = ‘Austin’

AND o.order_date BETWEEN ‘01-FEB-2015’ AND ‘28-FEB-2015’

 Customers (id, first_name, last_name, address, city)

Question: How do we evaluate this query?

Problem: it takes too long to scan the entire Customers table

Orders (id, order_date, ship_date, customer_id)

Questions: How do we evaluate this query? How can we speed this up?

Indexes

• Critical to database systems

• At least one index per table

• They work “behind the scenes”

• DBA looks at the workload and decides which indexes

to create (no easy answers)

• Creating indexes can be an expensive operation

• Query optimizer decides which indexes to use during

query execution

• Primary keys are automatically indexed

• Indexes are updated during a transaction

Creating Indexes

SELECT *

FROM Customers

WHERE city = 'Austin'

CREATE INDEX cust_city_indx ON Customers(city)

Customers (id, first_name, last_name, address, city)

Problem: it takes too long to scan the entire Customers table

Solution: create an index on the city column

Now the above query runs much faster

Creating Indexes

 Indexes can be created on more than one attribute:

Example:

Helps with:

Even helps with:

CREATE INDEX cust_city_indx ON Customers (city, last_name)

SELECT *

FROM Customers

WHERE city = 'Austin' AND last_name = 'Johnson'

SELECT *

FROM Customers

WHERE city = 'Austin'

B+ Tree

• B+ Tree = Balanced search tree

• The index is a separate file that is essentially organized as a table:
 Index(search_key, *record(s))

• Given a search_key, the index returns pointers to the records

• Search_key can be an attribute, collection of attributes of
 even an expression

 Note that the search key is not the same as the key of a table

Austin … El Paso …. San Antonio …

root

leaves

interior nodes

data

entries

Why not use Binary Search Trees?

• Nodes in a binary tree only have a single key = too small for databases

• In databases, index tree assumed to be on disk (not main memory)

• Want each node in the index to be as wide as a block

• Due to the cost of reading from disk, want to use the information
 stored in a block as aggressively as possible

B+ Tree Example

Austin San Antonio

Loredo Dallas

El Paso Houston

 Dallas El Paso

Houston

 Loredo San Antonio

root

Find search key ‘Austin’

leaves

data records

Index file

Data file

Clustered Indexes

• Datafile is sorted on the index attribute

• Only one clustered index per table

• Known as Index Organized Table (IOT) in Oracle

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

index datafile

block

Unclustered Index

• Can have multiple unclustered indexes per table

• Separate index and data files

10

10

20

20

20

30

30

30

20

30

30

20

10

20

10

30

index datafile

block

Question: when does it make sense to ignore an unclustered index?

Query Processing with B+ Trees

SELECT last_name

FROM Customers

WHERE city = ‘Austin’

 Customers (id, first_name, last_name, address, city)

Question: How do we use the index to answer this query?

CREATE INDEX cust_city_indx ON Customers(city)

Query Processing with B+ Trees

SELECT last_name

FROM Customers

WHERE city = ‘Austin’

 Customers (id, first_name, last_name, address, city)

Question: How do we use the index to answer this query?

Answer:

• Start at the root of the B+ tree

• Search the index for the key ‘Austin’

• Once we find the key ‘Austin’, follow pointers to all data records

Question: Why do we have multiple pointers?

CREATE INDEX cust_city_indx ON Customers(city)

Query Processing with B+ Trees

SELECT *

FROM Customers

WHERE last_name

BETWEEN ‘Johnson’ AND ‘Jones’

 Customers (id, first_name, last_name, address, city)

Question: How can we use the index to answer this range query?

CREATE INDEX cust_last_name_indx ON Customers(last_name)

Query Processing with B+ Trees

SELECT *

FROM Customers

WHERE last_name

BETWEEN ‘Johnson’ AND ‘Jones’

 Customers (id, first_name, last_name, address, city)

Question: How can we use the index to answer this range query?

Answer:

• Start at the root of the B+ tree

• Search for the key ‘Johnson’, the lower bound of the range

• Once we’ve reached the key for ‘Johnson’, follow the pointers

 to the right, examining their search keys until we’ve passed ‘Jones’,

 the upper bound of the range

CREATE INDEX cust_last_name_indx ON Customers(last_name)

Query Processing with B+ Trees

 Customers (id, first_name, last_name, address, city)

Question: How can we use the index to answer this query?

CREATE INDEX cust_last_name_indx ON Customers(last_name)

SELECT DISTINCT last_name

FROM Customers

Query Processing with B+ Trees

 Customers (id, first_name, last_name, address, city)

Question: How can we evaluate this query?

Answer:

• Scan the index for all the last name values.

Note: we don’t need to access the table to answer this query

CREATE INDEX cust_last_name_indx ON Customers(last_name)

SELECT DISTINCT last_name

FROM Customers

Query Processing with B+ Trees

SELECT * FROM Customers

WHERE city = ‘Austin’ AND last_name = ‘Johnson’

 Customers (id, first_name, last_name, address, city)

We can use the index to answer to first two queries. We can’t use

it to answer the last query though because the last_name values are

scattered across the index.

CREATE INDEX cust_city_last_name_indx

ON Customers(city, last_name)

SELECT * FROM Customers WHERE city = ‘Austin’

SELECT * FROM Customers WHERE last_name = ‘Johnson’

A composite index that is sorted first by city and second by last_name.

Optional References

• Douglas Comer. “The Ubiquitous B-Tree”. ACM Computing

Survey. 11(2): 121-137 (1979).

• R. Ramakrishnan and J. Gehrke. Database Management

Systems (3rd edition). McGraw-Hill 2003.

Next class

• Views

• Quiz #5

