Lecture 19: NoSQL I

Wednesday, April 8, 2015
Where We Are

• Mostly done with class project (phase 2 is optional)
• Today: Big Data
• Next class: MapReduce & Pig
• Next Wed: Cloud platforms
• In 2 weeks: MongoDB & other Data Stores
• In 3 weeks: Prep for Final

Very important: Keep up with readings and tutorials:
• Sadalage and Fowler, *NoSQL Distilled* (Addison-Wesley, 2013)
• MongoDB video tutorials (links on course web site)
Graph Data

Lots of interesting data has a graph structure:
• Social networks
• Communication networks
• Computer Networks
• Road networks
• Citations
• Collaborations/Relationships
• ...

Some of these graphs can get quite large (e.g., Facebook’s user graph)
“Big Data”

• Just a buzzword?

• Gartner 2011 report*:
 – High volume
 – High variety
 – High velocity

Question: what do you think about “Big Data”?

* http://www.gartner.com/newsroom/id/1731916
“Big Data” is really two problems

• The analysis problem:
 – How to extract useful info, using aggregate queries, machine learning and statistics

• The storage problem:
 – How to organize and partition huge amounts of data to support interactive queries
“Big Data” Meets RDBMS

Source: Sloan Digital Sky Survey images obtained from http://skyscraper.sdss.org
Classical DBMS (“Elephant” systems)

- Fixed schema (but alterations are possible)
- High-level query language (i.e. SQL)
- Limited analytics
- Structured & persistent data (e.g. inventory, banking, payroll, etc.)
- ACID properties
- Query optimization for consistent workloads
- Complex install & configurations
- Consumes time to load data
- Limited clustering and fault tolerance
- Primitive data partitioning technology
- Prohibitively expensive at web scale
Parallel Architectures

Shared Memory

Shared Disk

Shared Nothing

Performance metrics: speedup v.s. scaleup
Challenges: communication, resource contention, data skew
Discussion of Readings

What is the “impedance mismatch” problem?

Source: Sadalage and Fowler, NoSQL Distilled (Addison-Wesley, 2013).
NoSQL Systems

• Name “NoSQL” = “Not SQL” or “Not Only SQL”
• Typical characteristics:
 • don't use relational model
 • “flexible” schema => implicit schema
 • unstructured and semi-structured data
 • simple APIs (no joins)
 • eventual consistency (=> immature consistency)
 • mostly open-source systems
 • easy to prototype and deploy
 • designed for use on clusters
 • support for data partitioning and replication
• Major forces driving NoSQL systems:
 • cloud platforms (will come back to this topic)
 • web 2.0 apps
“Data Systems” Landscape

Source: Lim et al, “How to Fit when No One Size Fits”, CIDR 2013.
DBMS Market Shares

- From 2011 Gartner report*:
 - Oracle: 48% market with $11.7BN in sales
 - IBM: 20% market with $4.8BN in sales
 - Microsoft: 17% market with $4.0BN in sales
 - Other vendors (i.e. NoSQL): 5.8% market with $1.3BN in sales

* http://www.gartner.com/newsroom/id/1731916
Discussion of Readings

• NoSQL taxonomy proposed by Sadalage and Fowler:
 – Analytics: MapReduce, Pig, Hive, Spark, Dremel
 – Key/Value: Redis, Memcached, Voldemort
 – Column: BigTable, DynamoDB, HBase, Cassandra
 – Document: CouchDB, MongoDB, SimpleDB
 – Graph: GraphDB, Neo4j

• “NewSQL” or Hybrid Systems:
 – Megastore, Spanner, F1, VoltDB, NuoDB
Optional References

The Unreasonable Effectiveness of Data [Alon Halevy et. al., IEEE Intelligent Systems 24(2): 8-12, 2009]

Challenges and Opportunities with Big Data – A community white paper developed by leading researchers across the United States. [D. Agrawal et al., http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf, Mar 2012]

Next Class

• MapReduce and Pig
• HW 4