Lecture 22: NoSQL Finale

Wednesday, April 22, 2015

Announcements

« Course evaluations will be done online
* Today: continue and finish MongoDB
« Also today: Quiz 7

MongoDB Roadmap

* Query language
 Inserts, updates, deletes
* Replication and “sharding’
« “Eventual” consistency

H

Recall: Sample Documents for Queries

"book_id": "5528208",
"author": "Dan Sullivan",
"title": "NoSQL for Mere Mortals™,
"publisher": "Addison-Wesley",
"date": "05-88-2815",
"isbn": 9780134023212,
"comments": [
{"author": "Anonymous", "text": "How do I get an advanced copy?"}

]

"book_id": "3458",
"authors": ["Pramod J. Sadalage", "Martin Fowler™],
"title™: "NoSQL Distilled"”,
"publisher": "Addison-Wesley",
“"year": 2012,
"isbn": 9780321826626,
"comments": |
{"author": "Matt", "text": "Nice overview of NoSQL systems"},
{"author": "Thomas", "text": "Slightly out-of-date, but still relevant"}

]
¥

Recall: Find functions

db.collection.find({query},{projection})

db.collection.findOne({query},{projection})

Example:

db.posts.find({"author" : "Dan Sullivan"}, {"title" : 1})

Result: {"_id" Objectld("5537dae716fb8743d12c5a60"),
"title" : "NoSQL for Mere Mortals"}

FiIndOne

db.books.findOne({}, {"book id" : 1, "title" : 1, " id" : O})

Result: {"book _id" : "552020",
"title" : "NoSQL for Mere Mortals"}

db.books.findOne({"publisher" : "Addison-Wesley"},
{"title" : 1, " id" : 0})

Result: {"title" : "NoSQL for Mere Mortals"}

Query operators

« $lt — Less than

» $let — Less than or equal to

« $gt — Greater than

« $gte — Greater than or equal to

« $in — Query for values of a single key
« $or — Logical or

« $and — Logical and

« $not - Negation

Range Query

db.books.find({"year" . {"$gte" : 2012, "$lte" : 2015}})

Result:
{ "book_id": "3450",

"authors": ["Pramod J. Sadalage", "Martin Fowler"],

"title": "NoSQL Distilled", "publisher": "Addison-Wesley",

"year": 2012,

"isbn": 9780321826626,

"comments": [
{"author": "Matt", "text": "Nice overview of NOSQL systems"},
{"author": "Thomas", "text": "Slightly out-of-date, but still
relevant}]

In, Or Queries

db.books.find({"isbn": {"$in": [9876543210, 0123456789]}})

Result: empty (there were no books with either ISBN)

db.books.find({"$or": [{"author" : "Dan Sullivan"},
{title: "NoSQL for Mortals"}|})

Result:
{ "book id":"552020", "author": "Dan Sullivan",
"title" : "NoSQL for Mere Mortals",
"publisher" : "Addison-Wesley", "date" : "05-08-2015",
"isbn" : 9780134023212,
"comments” : [{"author” : "Anonymous", "text" : "How do | get
my advanced copy?"} |

Negation Query

db.books.find({"book_id" : {"$ne" : 552020}})

Result:
{ "book id":"3450",

"authors" : ['"Pramod J. Sadalage", "Martin Fowler"],

"title" : "NoSQL Distilled", "publisher": "Addison-Wesley",

"year" : 2012,

"isbn" : 9780321826626,

"comments" : [
{"author" : "Matt", "text": "Nice overview of NoOSQL systems"},
{"author" : "Thomas", "text": "Slightly out-of-date, but still
relevant}]

Querying Arrays

db.books.find({"authors" : "Martin Fowler"}, {"authors" : 1})

Result:

{ "authors" : ["Pramod J. Sadalage", "Martin Fowler"] }

db.books.find({"authors” : ["Martin Fowler", "Pramod J.
Sadalage"]}, {"authors" : 1})

Result: empty (there were no authors listed in this order)

db.books.find({"authors": {$all: ['Pramod J. Sadalage”,
"Martin Fowler"]}}, {"authors" : 1})

Result:

{ "authors" : ["Pramod J. Sadalage", "Martin Fowler"] }

Querying Objects

db.books.find({"comments.author" : "Anonymous"},
{"comments.text" : 1})

Result:

{ "comments" : [{ "text" : "How do | get an advanced copy?"}] }

db.books.find({"comments.author" : "Matt",
"comments.text" : "Nice overview of nosql systems'}

ftitle : 1))

Result: empty (there were no comments.text with this exact match)

Limits, Skips, Sorts, Counts

« db.books.find().limit(10)
— Limits the number of results to 10
 db.books.find().skip(3)
— Skips the first three results and returns the rest
e db.books.find().sort({"author" : 1, "title" : -1})
— Sorts by author ascending (1) and title descending
(-1)
* db.books.find().count()

— Counts the number of documents in the books
collection

Inserts

doc = { "book_id" : "3450",

"authors" [Pramod J. Sadalage", "Martin Fowler"],

"title" : "NoSQL Distilled", "publisher" : "Addison-Wesley",

"year" : 2012,

"isbn" : 9780321826626,

"comments" : [
{"author" : "Matt", "text": "Nice overview of NoOSQL systems"},
{"author" : "Thomas", "text": "Slightly out-of-date, but still
relevant"}]

}
db.books.insert(doc)

Result: WriteResult({ "ninserted" : 1 })

Updates and Deletes

db.books.update({"book id" : "552020"}, {"price" : 35.20})

Result:
WriteResult({ "nMatched" : O, "nUpserted" : 0, "nModified" : 0 })

db.books.update({"book_id" : "552020"}, {"price" : 35.20},
{ upsert: true })

Result:
WriteResult({ "nMatched" : O, "nUpserted" : 1, "nModified" : 0 })

db.books.remove({"book_id" : “56520207})

Result:
WriteResult({ "nRemoved" : 1 })

Replacements

doc = { "book_id" : "3450",
"authors" : ["Pramod J. Sadalage", "Martin Fowler"],
"title" : "NoSQL Distilled",
"publisher" : "Addison-Wesley",
"year" : 2012,
"isbn" : 9780321826626

}
db.books.update({"book_id" : "3450"}, doc)

Result:
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

MongoDB Design Goals

« Want a data management system with properties:
— Flexible schema (= semi-structured data model)
— Highly-scalable (= support millions of transactions per second)

« To achieve goals, willing to give up:
— Complex queries: e.g., give up on joins
— Multi-document transactions
— ACID guarantees: e.g., eventual consistency OK

Terminology

« Replication = Create multiple copies of each
database partition. Replication can be synchronous
or asynchronous. Spread gueries across these
replicas. Goals: scalability and availability.

« Sharding = horizontal partitioning by some key, and
storing partitions on different servers. Data is de-
normalized to avoid cross-shard operations (no
distributed joins). Split the shards as data volumes or
access grows. Goals: massive scalability.

Two-Phase Commit = Too Slow

 Phase 1.
— Coordinator sends “Prepare to Commit”
— Replicas make sure they can do so no matter what
(write the action to a log to tolerate failure)
— Replicas reply “Ready to Commit”

« Phase 2:
— If all replicas ready, coordinator sends “Commit”
— If any replicas failed, coordinator sends “Abort”

“Eventual” Consistency

CAP Theorem: Trade-off between system availability, data
consistency and tolerance to network partitions. You can
only have 2/3 properties (Brewer, 2000)

Eventual consistency = relaxed consistency = system
always accepts writes, but reads may not reflect the latest
updates

Write conflicts will eventually propagate throughout the
system. “Eventually” is undefined (sometime in the future)

Eventual consistency implemented using vector clocks
Approach pioneered by Amazon with Dynamo (2007)
Adopted by MongoDB and majority of NoSQL systems

Vector Clocks

« A dataitem D has a set of [server, version] pairs
where server = server name that wrote D
and version = the version of D written by that server

« Suppose D([S1, v1]), [S2, v2]), then D represents
version v1 for S1, version v2 for S2.

 |f server Si updates D, then:
— If (S, vi) exists, it must increment vi to vi+1
— Otherwise, it must create new entry (Si, v1)

Vector Clock Example

1. Client 1 writes data item D at server SX: D = D([SX,V1])

2. Client 2 reads D([SX,V1]), updates D, and this update is
handled by server SX: D = D([SX,V2]) (Note: [SX,V1]is
garbage collected)

3. Client 3 reads D([SX,V2]), updates D and this update is
handled by server SY: D = D([SX,V2], [SY,V1])

4. Client 4 reads D([SX,V2]) (i.e. most recent write had not
yet propagated), updates D and this update is handled by
server SZ: D =D ([SX,V2], [SZ,V1])

5. Client 5 reads D([SX,V2], [SY,V1]) from one replica and
D([SX,V2], [SZ,V1]) from a different replica: Conflict!

Detecting Conflicts

* Vector clocks let us detect conflicts. How? Need to
understand what it means for a version to be derived from
another version

« A data item D is an ancestor of D’ if for all
[S, v] € D there exists [S,v]eD’'s.t.v £ Vv

* Otherwise, D and D’ are on parallel branches, and it
means they have a conflict that needs to be reconciled by
the application

In-class Exercise

D D’ Conflict? | Newest Version

([SX,v3]) ([SX,v5]) No ([SX,v5])
([SX,v3],[SY,v6],

([SX,v3],[SY,v6]) SZ.v2])

([SX,VB], ([SX1V3]’[SY’V6]1

[SY,v10]) [SZv2]) ves N/A

([SX,v3], ([SX,v3].[SY,v20],

[SY,v10]) [SZ,v2])

([SX,v3],[SY,v6])

([SX,v3],[SZ,v2])

Quiz 7

Q1 (6 points): Consider the following JSON document that describes our class:

{
" id" "33,
"course" { "code" : cs327¢, "title": “Elements of Databases”}
"year" : 2015,
"semester" : "Spring"
"instructor" : “Shirley Cohen”,
"prerequisites"” : ['cs303"],
ratings: nill
last_modified: "04-22-2015"

a) find all the syntax errors in the JSON document and correct them.

b) add another element for the number of students enrolled in the class. There are
66.

c) add a nested object with the TA's name (Yuming Sheng), her office hours times
(Fridays 2-4pm), and location (TA Station Desk 5).

Quiz 7 (cont.)

Q2 (2 points): Explain the term “semi-structured data” and briefly describe its
significance.

Q3 (2 points): Give analogous concepts between Oracle and MongoDB by filling out
the table below. If no analog exists, write “none”.

Oracle MongoDB
Instance
Schema
Table
Document
Primary Key
Foreign Key

Next Week

« Monday: Lighting Talks
 Wednesday: Review for Final

