
Lecture 22: NoSQL Finale

Wednesday, April 22, 2015

Announcements

• Course evaluations will be done online

• Today: continue and finish MongoDB

• Also today: Quiz 7

MongoDB Roadmap

• Data model

– JSON syntax

– Semi-structured data

• Query language

• Inserts, updates, deletes

• Replication and “sharding”

• “Eventual” consistency

Recall: Sample Documents for Queries

Recall: Find functions

db.collection.find({query},{projection})

db.posts.find({"author" : "Dan Sullivan"}, {"title" : 1})

Example:

Result: { "_id" ObjectId("5537dae716fb8743d12c5a60"),

 "title" : "NoSQL for Mere Mortals"}

db.collection.findOne({query},{projection})

FindOne

 Result: {"book_id" : "552020",

 "title" : "NoSQL for Mere Mortals"}

 Result: {"title" : "NoSQL for Mere Mortals"}

db.books.findOne({}, {"book_id" : 1, "title" : 1, "_id" : 0})

db.books.findOne({"publisher" : "Addison-Wesley"},

{"title" : 1, "_id" : 0})

Query operators

• $lt – Less than

• $let – Less than or equal to

• $gt – Greater than

• $gte – Greater than or equal to

• $in – Query for values of a single key

• $or – Logical or

• $and – Logical and

• $not - Negation

Range Query

 Result:

 { "book_id": "3450",

 "authors": ["Pramod J. Sadalage", "Martin Fowler"],

 "title": "NoSQL Distilled", "publisher": "Addison-Wesley",

 "year": 2012,

 "isbn": 9780321826626,

 "comments": [

 {"author": "Matt", "text": "Nice overview of NoSQL systems"},

 {"author": "Thomas", "text": "Slightly out-of-date, but still

 relevant"}]

 }

db.books.find({"year" : {"$gte" : 2012, "$lte" : 2015}})

In, Or Queries

 Result: empty (there were no books with either ISBN)

 Result:

 { "book_id" : "552020", "author" : "Dan Sullivan",

 "title" : "NoSQL for Mere Mortals",

 "publisher" : "Addison-Wesley", "date" : "05-08-2015",

 "isbn" : 9780134023212,

 "comments“ : [{"author" : "Anonymous", "text" : "How do I get

 my advanced copy?"}]

 }

db.books.find({"isbn": {"$in": [9876543210, 0123456789]}})

db.books.find({"$or": [{"author" : "Dan Sullivan"},

 {title: "NoSQL for Mortals"}]})

Negation Query

 Result:

 { "book_id" : "3450",

 "authors" : ["Pramod J. Sadalage", "Martin Fowler"],

 "title" : "NoSQL Distilled", "publisher": "Addison-Wesley",

 "year" : 2012,

 "isbn" : 9780321826626,

 "comments" : [

 {"author" : "Matt", "text": "Nice overview of NoSQL systems"},

 {"author" : "Thomas", "text": "Slightly out-of-date, but still

 relevant"}]

 }

db.books.find({"book_id" : {"$ne" : 552020}})

Querying Arrays

 Result:

 { "authors" : ["Pramod J. Sadalage", "Martin Fowler"] }

 Result: empty (there were no authors listed in this order)

 Result:

 { "authors" : ["Pramod J. Sadalage", "Martin Fowler"] }

db.books.find({"authors" : "Martin Fowler"}, {"authors" : 1})

db.books.find({"authors“ : ["Martin Fowler", "Pramod J.

Sadalage"]}, {"authors" : 1})

db.books.find({"authors": {$all: ["Pramod J. Sadalage",

"Martin Fowler"]}}, {"authors" : 1})

Querying Objects

 Result:

 { "comments" : [{ "text" : "How do I get an advanced copy?"}] }

 Result: empty (there were no comments.text with this exact match)

db.books.find({"comments.author" : "Anonymous"},

 {"comments.text" : 1})

db.books.find({"comments.author" : "Matt",

"comments.text" : "Nice overview of nosql systems"}

{title : 1}))

Limits, Skips, Sorts, Counts

• db.books.find().limit(10)

– Limits the number of results to 10

• db.books.find().skip(3)

– Skips the first three results and returns the rest

• db.books.find().sort({"author" : 1, "title" : -1})

– Sorts by author ascending (1) and title descending

(-1)

• db.books.find().count()

– Counts the number of documents in the books

collection

Inserts

doc = { "book_id" : "3450",

 "authors" : ["Pramod J. Sadalage", "Martin Fowler"],

 "title" : "NoSQL Distilled", "publisher" : "Addison-Wesley",

 "year" : 2012,

 "isbn" : 9780321826626,

 "comments" : [

 {"author" : "Matt", "text": "Nice overview of NoSQL systems"},

 {"author" : "Thomas", "text": "Slightly out-of-date, but still

 relevant"}]

 }

db.books.insert(doc)

Result: WriteResult({ "nInserted" : 1 })

Updates and Deletes

Result:

 WriteResult({ "nMatched" : 0, "nUpserted" : 0, "nModified" : 0 })

 Result:

 WriteResult({ "nMatched" : 0, "nUpserted" : 1, "nModified" : 0 })

 Result:

 WriteResult({ "nRemoved" : 1 })

db.books.update({"book_id" : "552020"}, {"price" : 35.20})

db.books.update({"book_id" : "552020"}, {"price" : 35.20},

{ upsert: true })

db.books.remove({"book_id" : “552020”})

Replacements

doc = { "book_id" : "3450",

 "authors" : ["Pramod J. Sadalage", "Martin Fowler"],

 "title" : "NoSQL Distilled",

 "publisher" : "Addison-Wesley",

 "year" : 2012,

 "isbn" : 9780321826626

 }

db.books.update({"book_id" : "3450"}, doc)

Result:

 WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

MongoDB Design Goals

• Want a data management system with properties:

– Flexible schema (= semi-structured data model)

– Highly-scalable (= support millions of transactions per second)

• To achieve goals, willing to give up:

– Complex queries: e.g., give up on joins

– Multi-document transactions

– ACID guarantees: e.g., eventual consistency OK

Terminology

• Replication = Create multiple copies of each

database partition. Replication can be synchronous

or asynchronous. Spread queries across these

replicas. Goals: scalability and availability.

• Sharding = horizontal partitioning by some key, and

storing partitions on different servers. Data is de-

normalized to avoid cross-shard operations (no

distributed joins). Split the shards as data volumes or

access grows. Goals: massive scalability.

Two-Phase Commit = Too Slow

• Phase 1:

 – Coordinator sends “Prepare to Commit”

 – Replicas make sure they can do so no matter what

 (write the action to a log to tolerate failure)

 – Replicas reply “Ready to Commit”

• Phase 2:

 – If all replicas ready, coordinator sends “Commit”

 – If any replicas failed, coordinator sends “Abort”

“Eventual” Consistency

• CAP Theorem: Trade-off between system availability, data

consistency and tolerance to network partitions. You can

only have 2/3 properties (Brewer, 2000)

• Eventual consistency = relaxed consistency = system

always accepts writes, but reads may not reflect the latest

updates

• Write conflicts will eventually propagate throughout the

system. “Eventually” is undefined (sometime in the future)

• Eventual consistency implemented using vector clocks

• Approach pioneered by Amazon with Dynamo (2007)

• Adopted by MongoDB and majority of NoSQL systems

Vector Clocks

• A data item D has a set of [server, version] pairs

 where server = server name that wrote D

 and version = the version of D written by that server

• Suppose D([S1, v1]), [S2, v2]), then D represents

version v1 for S1, version v2 for S2.

• If server Si updates D, then:

– If (Si, vi) exists, it must increment vi to vi+1

– Otherwise, it must create new entry (Si, v1)

Vector Clock Example

1. Client 1 writes data item D at server SX: D = D([SX,V1])

2. Client 2 reads D([SX,V1]), updates D, and this update is

handled by server SX: D = D([SX,V2]) (Note: [SX,V1] is

garbage collected)

3. Client 3 reads D([SX,V2]), updates D and this update is

handled by server SY: D = D([SX,V2], [SY,V1])

4. Client 4 reads D([SX,V2]) (i.e. most recent write had not

yet propagated), updates D and this update is handled by

server SZ: D = D ([SX,V2], [SZ,V1])

5. Client 5 reads D([SX,V2], [SY,V1]) from one replica and

D([SX,V2], [SZ,V1]) from a different replica: Conflict!

Detecting Conflicts

• Vector clocks let us detect conflicts. How? Need to

understand what it means for a version to be derived from

another version

• A data item D is an ancestor of D’ if for all

 [S, v] ∈ D there exists [S,v’] ∈ D’ s.t. v ≤ v’

• Otherwise, D and D’ are on parallel branches, and it

 means they have a conflict that needs to be reconciled by

 the application

In-class Exercise

 D D’ Conflict? Newest Version

([SX,v3]) ([SX,v5]) No ([SX,v5])

([SX,v3],[SY,v6])
([SX,v3],[SY,v6],

[SZ,v2])

([SX,v3],

[SY,v10])

([SX,v3],[SY,v6],

[SZ,v2])
 Yes N/A

([SX,v3],

[SY,v10])

([SX,v3],[SY,v20],

[SZ,v2])

([SX,v3],[SY,v6]) ([SX,v3],[SZ,v2])

Quiz 7

Q1 (6 points): Consider the following JSON document that describes our class:

{

 "_id" : "33",

 "course" { "code" : cs327e, "title": “Elements of Databases”}

 "year" : 2015,

 "semester" : "Spring"

 "instructor" : “Shirley Cohen”,

 "prerequisites" : ["cs303"],

 ratings: nill

 last_modified: "04-22-2015"

}

a) find all the syntax errors in the JSON document and correct them.

b) add another element for the number of students enrolled in the class. There are

 66.

c) add a nested object with the TA's name (Yuming Sheng), her office hours times

 (Fridays 2-4pm), and location (TA Station Desk 5).

Quiz 7 (cont.)

Q2 (2 points): Explain the term “semi-structured data” and briefly describe its

 significance.

Q3 (2 points): Give analogous concepts between Oracle and MongoDB by filling out

 the table below. If no analog exists, write “none”.

Next Week

• Monday: Lighting Talks

• Wednesday: Review for Final

