Final Review #1

Wednesday, April 29, 2015

Agenda

- Next two classes: Final Review
- Today: Makeup Quiz
- Reminder: Course evaluations

The Final: Logistics

- Date: Wednesday, May 6, 2015
- Time: 5:00 6:30
- Where: In class
- Open book exam :)
- No computers :(

The Final: Content

5 Problems with Sub-Problems:

- 1. Queries
- 2. Data modeling
- 3. Transactions
- 4. Query processing
- 5. NoSQL systems

General Advice

- Some problems will require thinking
 - Use judgment
- Problem difficulty may be uneven:
 - do the easy ones first

Problem 1: Queries

- SQL
- MongoDB query language

SQL

- select-from-where
- order by and renamings
- joins
- group-by and having
- aggregations
- views
- insert, update, delete

Interesting question: *does one query return a subset of another?*

SQL Practice Problem #1

Find all students in the database: SELECT *

FROM students

WHERE gpa >= 3.5 OR gpa < 3.5

Question: what's wrong?

SQL Practice Problem #2

Products(<u>product_id</u>, product_name) Sales(<u>sale_id</u>, product_id, quarter, year, quantity, price)

Find total sales by product for Q1 of this year: SELECT p.product_name, SUM(s.quantity*s.price) AS total_sales FROM products p, sales s WHERE p.product_id = s.product_id AND s.quarter = 1 AND s.year = 2015 GROUP BY product_name

Question: what's wrong?

SQL Practice Problem #3

Old Schema:

ProductRequests(customer_id, customer_name, product_id, request_date)

New Schema:

Products(<u>id</u>, name, color, weight, number_available) Customers(<u>id</u>, name, age, address, city) Requests(<u>customer_id</u>, <u>product_id</u>, date)

Question: create ProductRequests view over new schema

MongoDB

- find and findOne
- comparison operators: \$lt, \$lte, \$gt, and \$gte
- logical operators: \$in, \$or, \$and
- arrays: \$all
- embedded documents: dot notation
- insert, update (with upsert), remove

An interesting question: write query to transform a JSON document

Problem 2: Data Modeling

- E/R diagrams
- Normal forms
- JSON and semi-structured data

E/R Diagrams

- Entities, attributes
- Relationships
- Inheritance
- Translation to relations
- SQL DDL:
 - Creating tables
 - Constraints

An interesting question: translate an inheritance graph to relations

Normal Forms

- Data anomalies
- Functional dependencies
- 1NF, 2NF and 3NF definitions
- Checking if a relation is in 3NF
- Decomposing into 3NF

An interesting question: *does a FD hold on a table?*

Revisiting Normal Forms

Recall: Functional Dependencies

Definition:

If two tuples agree on the attributes

$$A_1, A_2, ..., A_n$$

then they must also agree on the attributes

$$B_1, B_2, ..., B_n$$

Formally:

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_n$$

Unnormalized to 1NF

Rule: A database schema is in 1NF *iff* all attributes have scalar values

Students

Student	Semester	GPA	Courses	Students'				
Alice	Spring15	3.9	Math		Student	<u>Semester</u>	GPA	<u>Course</u>
			DB		Alice	Spring15	3.9	Math
			Alg		Alice	Spring15	3.9	DB
Bob Carol	Spring15 Spring15	3.7 3.5	DB Alg Math Alg		Alice	Spring15	3.9	Alg
					Bob	Spring15	3.7	DB
					Bob	Spring15	3.7	Alg
					Carol	Spring15	3.5	Math
					Carol	Spring15	3.5	Alg

unnormalized

1NF

1NF to 2NF

Rule: A database schema is in 2NF *iff* it is in 1NF and there are no partial FDs on the primary key (i.e. all non-key attributes must be dependent on the entire PK)

Students

	Student	Semester	Course	GPA			<u>Studen</u>	<u>t</u>	<u>Course</u>	<u>Semester</u>
	Alice	Spring15	Math	3.9			Alice		Math	Spring15
	Alice	Spring15	DB	3.9		→	Alice		DB	Spring15
	Alice	Spring15	Alg	3.9			Alice		Alg	Spring15
	Bob	Spring15	DB	3.7			Bob		DB	Spring15
	Bob	Spring15	Alg	3.7			Bob		Alg	Spring15
	Carol	Spring15	Math	3.5			Carol		Math	Spring15
	Carol	Spring15	Alg	3.5			Carol		Alg	Spring15
	GPA									
						<u>Ser</u>	<u>nester</u>	GPA	7 2NF	
					Alice	Sp	ring15	3.9		
As	sumptions	Bob	Sp	oring15 3.7						
1.	Student, Se	Carol	Sp	ring15	3.5	1				
2.	GPA is not functionally determined by course									

2NF

Enrolls

2NF to 3NF

Rule: A database schema is in 3NF *iff* it is in 2NF and there are no transitive dependencies

A commetioner

Students

EID Name		Major	College				
100 Alice		Math	Natural Sciences		$EID \rightarrow Name, Major$ $Major \rightarrow College$ $By transitivity, EID \rightarrow College$		
200 Bob		CS	Natural Sciences				
300	Carol	Finance	Business				
Stude	2NF nts'			Maiors			
EID	Name	Major	Л Г	Major	College		
100	Alice	Math	1	Math	Natural Sciences		
200	200 Bob		CS		Natural Sciences		
300 Carol		Finance] [Finance	Business		

JSON

- JSON syntax
- From relations to JSON
- From JSON to relations

An interesting question: N/A

Problem 3: Transactions

- Data inconsistencies
- Concurrency control
- Distributed transaction processing

Data inconsistencies

- Dirty reads
- Non-repeatable reads
- Phantom reads

An interesting question: *find inconsistencies in a schedule*

Concurrency Control

- Serializability
- Repeatable Read
- Read Committed
- Read Uncommitted

An interesting question: explain what happens in a schedule

Distributed Transactions

- 2 phase commit
- "Eventual" consistency

An interesting question: *identify conflicting vector clocks*

Problem 4: Query Processing

- Query execution without indexes
- Query execution with indexes
- Types of indexes:
 - clustered index
 - unclustered index
- B+ trees

An interesting question: select index based on SQL queries

Problem 5: NoSQL Systems

- Data systems landscape
- MapReduce
- MongoDB
- Replication and "sharding"

An interesting question: *convert a SQL query to MapReduce*

COMMIT (The End)

Make-up Quiz

- Q1: What is the difference between horizontal and vertical partitioning?
- Q2: When would you use a virtual view as opposed to a materialized view and why?
- Q3: List out what ACID stands for and explain two of them
- Q4: List one data model that is used by NoSQL systems