
1

Lecture 6: Aggregate queries

Monday, February 9, 2015

Agenda for today

 Chapters 5: aggregate queries

 Practice aggregate queries in class

Standard aggregate operators

 count

 sum

 avg

 max

 min

Count examples

SELECT COUNT(*)

FROM invoices

WHERE invoice_date >= ‘09-FEB-2014’

SELECT COUNT(*) AS number_of_invoices

FROM invoices

WHERE invoice_total > 50

More count examples

SELECT COUNT(*)

FROM customers

SELECT COUNT(customer_city)

FROM customers

 COUNT(customer_city) != COUNT(*) Why?

SELECT COUNT(DISTINCT customer_city)

FROM customers

Sum examples

SELECT SUM(invoice_total – payment_total)

FROM invoices

SELECT SUM(order_qty * unit_price)

FROM order_details, items

WHERE order_details.item_id = items.item_id

Min and Max examples

SELECT MIN(invoice_total) AS lowest_invoice_total,

MAX(invoice_total) AS highest_invoice_total,

COUNT(*) AS number_of_invoices

FROM invoices

SELECT MIN(vendor_name) AS first_vendor,

MAX(vendor_name) AS last_vendor,

COUNT(vendor_name) AS number_of_vendors

FROM vendors

Six clauses in SQL query:

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

Grouping example

SELECT c.customer_city, SUM(od.order_qty * i.unit_price) AS

total_sales

FROM customers c, orders o, order_details od, items i

WHERE c.customer_id = o.customer_id

AND o.order_id = od.order_id

AND od.item_id = i.item_id

GROUP BY c.customer_city

ORDER BY c.customer_city

Evaluation steps:

1. Compute the FROM and WHERE clauses

2. Compute the attribute(s) in the GROUP BY

3. Compute the aggregate value(s) in the SELECT clause

Grouping with left outer join example

SELECT c.customer_city, sum(od.order_qty * i.unit_price)

as total_sales

FROM customers c LEFT JOIN orders o

ON c.customer_id = o.customer_id

LEFT JOIN order_details od

ON o.order_id = od.order_id

LEFT JOIN items i

ON od.item_id = i.item_id

GROUP BY c.customer_city

ORDER BY c.customer_city

Observation: Now empty groups are also included

Grouping with having example

SELECT c.customer_city, SUM(od.order_qty * i.unit_price) AS

total_sales

FROM customers c, orders o, order_details od, items i

WHERE c.customer_id = o.customer_id

AND o.order_id = od.order_id

AND od.item_id = i.item_id

GROUP BY c.customer_city

HAVING SUM(od.order_qty * i.unit_price) > 50

ORDER BY c.customer_city

Evaluation steps:

1. Compute the FROM and WHERE clauses

2. Compute the attribute(s) in the GROUP BY and apply the

 HAVING condition to each group

3. Compute the aggregate value(s) in the SELECT clause

Syntactic rule: Every non-aggregated attribute that

is in the SELECT clause of a GROUP BY query must

also appear in the GROUP BY clause. Why?

SELECT c.customer_state, c.customer_city,

 SUM(od.order_qty * i.unit_price) As total_sales

FROM customers c LEFT JOIN orders o

ON c.customer_id = o.customer_id

LEFT JOIN order_details od

ON o.order_id = od.order_id

LEFT JOIN items i

ON od.item_id = i.item_id

GROUP BY c.customer_state, c.customer_city

ORDER BY c.customer_state, c.customer_city

What is wrong with this query?

SELECT v.vendor_id, v.vendor_name, count(*) AS

number_invoices

FROM invoices i, vendors v

WHERE i.vendor_id = v.vendor_id

GROUP BY v.vendor_id

HAVING COUNT(*) >= 2

ORDER BY v.vendor_id, v.vendor_name

Using WITH to find for each vendor, the

invoice_number for the highest invoice.

WITH temp AS (SELECT v.vendor_id, v.vendor_name,

 MAX(invoice_total) AS highest_invoice

 FROM invoices i, vendors v

 WHERE i.vendor_id = v.vendor_id

 GROUP BY v.vendor_id, v.vendor_name)

SELECT v.vendor_id, v.vendor_name, i.invoice_number,

t.highest_invoice

FROM vendors v, invoices i, temp t

WHERE v.vendor_id = i.vendor_id

AND v.vendor_id = t.vendor_id

AND v.vendor_name = t.vendor_name

AND i.invoice_total = t.highest_invoice

ORDER BY t.highest_invoice DESC

In-class exercises

Items (item_id, item_description, item_price)

Order_Details (order_id, item_id, order_qty)

Orders (order_id, customer_id, order_date, shipped_date)

Customers (customer_id, customer_first_name, customer_last_name,

 customer_address, customer_city, customer_zip…)

Ex #1: Find customers who are from California, but not LA.

Ex #2: Find the number of customers who purchased the

 same items. Return the item_description along with

 the number of customers who purchased that item.

Ex #3: Find customers who have spent less than $5

 on an order as well as customers who have never

 placed an order.

Ex #4: Compute the total number of sales for each item.

 Want to also include items that didn’t sell.

Next class

 Conceptual design: Chapter 9 in Murach textbook

 Quiz #2

