
Lecture 12: Transactions

Monday, March 2, 2015

Agenda

• Review HW #3

• Introduce transactions

• Work on class project (Checkpoints #1 and #2)

Review Questions: SQL Design

• How would you represent in SQL:

 1-the solar system and its planets?

 2-the solar system and its star?

 3-space probes and their observed objects?

Source: http://en.wikipedia.org/wiki/Solar_System#mediaviewer/File:Planets2013.jpg

http://en.wikipedia.org/wiki/Solar_Systemmediaviewer/File:Planets2013.jpg

Transactions

• Problem: Applications need to run multiple concurrent
updates on a database. These updates can interfere with
one another. Moreover, the database machine can crash
at any time.

• Solution: Applications instructions are bundled together
into one logical unit called a Transaction

A World without Transactions

• Writes to files to ensure durability

• Rely on OS for scheduling and concurrency control

• So what can go wrong?

– System crashes

– Data anomalies (3 are famous)

What can go wrong #1: System crashes

Transfer $500 Alice  Bob:

UPDATE Accounts

SET balance= balance - 500

WHERE name= 'Alice'

UPDATE Accounts

SET balance = balance + 500

WHERE name= 'Bob'

Crash!!!

What can go wrong #2: Lost updates

App instance 1:

UPDATE Usage

SET song_count = song_count + 1

WHERE cust_name= 'Alice'

Two app instances play songs as Alice at around the

same time. What happens?

App instance 2:

UPDATE Usage

SET song_count = song_count + 1

WHERE cust_name= 'Alice'

What can go wrong #3: Inconsistent reads

Client 1: renames iPhone5  iPhone6

UPDATE Inventory

SET quantity = quantity + 10

WHERE item = ‘iPhone6’

UPDATE Inventory

SET quantity = quantity - 10

WHERE item = ‘iPhone5’

Client 2: generates report

SELECT sum(quantity)

FROM Inventory

What can go wrong #4: Dirty reads

Client 1: transfer $100

Account 1  Account 2

Account2.balance += 100

if Confirm():

 Account1.balance −=100

else:

 # rollback

 Account2.balance −= 100

 print “Transfer Cancelled!”

Client 2: transfer $100

Account 2  Account 3

Account3.balance += 100

if Confirm():

 Account2.balance −=100

else:

 # rollback

 Account3.balance −= 100

 print “Transfer Cancelled!”

Transactions: Definition

• A transaction = one or more read and/or write operations,
which reflects a consistent transformation of state

– It either happens or does not

• Examples:

– Transfer money between accounts

– Purchase a pair of movie tickets

– Register for a class with multiple sections

• By using transactions, all previous anomalies go away

Transactions in Applications

[START TRANSACTION]

SQL statement1

[SQL statement2]

…

…

[SQL statementn]

COMMIT; or ROLLBACK;

Revised Code using Transactions

Client 1: transfer $100 Account 1  Account 2

UPDATE Accounts

SET balance = balance+100

WHERE account_id = 2;

if Confirm():

 UPDATE Accounts

 SET balance = balance-100

 WHERE account_id = 1;

 COMMIT;

else:

 # rollback

 ROLLBACK;

 print “Transfer Cancelled!”

Revised Code using Transactions

Client 2: transfer $100 Account 2  Account 3

UPDATE Accounts

SET balance = balance+100

WHERE account_id = 3;

if Confirm():

 UPDATE Accounts

 SET balance = balance-100

 WHERE account_id = 2;

 COMMIT;

else:

 # rollback

 ROLLBACK;

 print “Transfer Cancelled!”

ACID Properties

• Atomicity

– State shows either all the effects of tx or none of them

• Consistency

– Tx moves from a state where integrity holds to another state
where integrity holds

• Isolation

– Effect of interleaving txs is the same as txs running one after
another

• Durable

– Once a tx has committed, its effects remain in the database

ACID: Isolation

• A transaction executes concurrently with other transactions

• Isolation: the effect is as if each transaction executes in isolation

from the others

• More on this next time

Checkpoint #1: Project Groups

Checkpoint #2: Project Proposal

• Due next class (Wednesday, 03/04)

• Should be about 1 page in length.

• Suggested content:

 -title and group members

 -short description of the project

 -list any interesting issues or unanswered questions

 -expected responsibilities/deliverables for each group member

 -important: tools and datasets you are planning to use

• Submit proposal in class or by email

Next Class

• Continue transactions

• Work on project proposals

