
Lecture 13:

Continuing Transactions

Wednesday, March 4, 2015

Agenda

• Discuss any issues with HW #3

• Continue transactions

• Work on project proposal (Checkpoint #2)

Review: ACID Properties

• Atomicity = A tx’s operations either happen in their entirely or

not at all. There are only two outcomes (commit or rollback).

• Consistency = If the database satisfies the constraints at the

beginning of the tx, and if the application is written correctly,

then the constraints must hold at the end of the tx. The duty of

the tx is to ensure that the database remains consistent.

• Isolation = Although a tx can be interleaved with other txs, it

executes in isolation. There is no interference from other txs.

• Durability = Txs have to persist their updates to disk (not just

main memory).

Transaction Definitions

• From the application-level:

 -- A transaction = one or more operations, which represents a

 logical unit of work. This logical unit of work cannot be broken

 up into smaller units without potentially compromising

 the integrity of the database.

• For the DBMS-level:

 -- A transaction = a sequence of read and/or write operations

Concurrency Control

• The Problem:

 -- A transaction can perform many updates

 -- For efficiency reasons, we can’t wait for one tx to complete

 before starting another tx

 -- How can we allow txs to be interleaved without letting them

 hurt one another?

• The Solution:

 -- Use a scheduler to decide which tx goes next

 -- A schedule is a sequence of interleaved actions from all

 transactions

 -- Our goal is to understand what makes a good schedule

Serializable Schedule

A schedule is serializable if it is

equivalent to a serial schedule

Running example

T1

READ(A, x)

x := x+100

WRITE(A, x)

READ(B, x)

x := x+100

WRITE(B,x)

T2

READ(A, y)

y := y*2

WRITE(A,y)

READ(B,y)

y := y*2

WRITE(B,y)

Want to construct a schedule for these two independent txs, T1

and T2

A Serial Schedule

T1 T2
READ(A, x)
x := x+100
WRITE(A, x)
READ(B, x)
x := x+100
WRITE(B,x)

READ(A,y)
y := y*2
WRITE(A,y)
READ(B,y)
y := y*2
WRITE(B,y)

A Serializable Schedule

T1 T2
READ(A, x)
x := x+100
WRITE(A, x)

READ(A,y)

y := y*2

WRITE(A,y)

READ(B, x)

x := x+100

WRITE(B,x)

READ(B,y)
y := y*2
WRITE(B,y)

Question: what efficiencies

do we gain with this schedule?

Another Serializable Schedule

T1 T2

READ(A, x)

x := x+100

WRITE(A, x)

READ(B, x) READ(A,y)

x := x+100 y := y*2

WRITE(B,x) WRITE(A,y)

READ(B,y)

y := y*2

WRITE(B,y)

A Non-Serializable Schedule

T1 T2
READ(A, x)
x := x+100
WRITE(A, x)

READ(A,y)

y := y*2

WRITE(A,y)

READ(B,y)

y := y*2

WRITE(B,y)

READ(B, x)
x := x+100
WRITE(B,x)

Conflicting actions

r1(X); w1(Y) Two actions belonging to same tx:

w1(X); w2(X) Two writes by T1 and T2 to same record:

w1(X); r2(X) Read/write by T1 and T2 to same record:

r1(X); w2(X)

In other words, two actions conflict if they involve the same record

and at least one of them is a write.

A serializable schedule is derived by swapping the non-conflicting

actions of multiple concurrent txs (e.g. reads on the same record,

reads and writes on different records).

[TX DEMO]

Reflections

• The demo showed that when tx T2 tried to update the same

record as tx T1, T2’s update hung until T1’s commit.

 Question: Is this behavior expected?

 Ans: Yes, this shows the effects of serializing writes to the

 same record.

Reflections

• The demo showed that during an update by T1, T2 was

able to read the same record that T1 was modifying.

 Question: Which value of the record did T2 read?

Ans: T2 read the last committed value of the record (not

the dirty value that T1 was actively modifying).

• Observation: T2’s read did not hang the way it did during

 the conflicting write. This implies that write-read conflicts

 are resolved by the DBMS. How?

 Ans: This is done using Multiversion Concurrency Control

 (MVCC).

 Question: what side-effects can MVCC have?

Rolled-back Transactions

• Rollbacks initiated by application:

 -- Rollback when user cancels an operation

 -- Rollback if one or more constraints are not satisfied

• Rollbacks initiated by DBMS:

 -- Rollback when database aborts

 -- Rollback when there is a deadlock condition

 -- Rollback when there is a timeout

• Schedules with Rolled-back Transactions

 -- When a tx rolls back, the recovery manager undoes its

 updates

 -- But some of its updates may have affected other txs!

Issues with Rollback

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Rollback

Recoverable Schedule

 A schedule is recoverable if:

• It is serializable

• Whenever a tx T commits, all txs that have written

records read by T have already committed

Non-Recoverable and Recoverable Schedules

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Rollback

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Rollback

Rollback

Schedule A: non-recoverable Schedule B: recoverable

Optional References

• Jim Gray and Andreas Reuter. Transaction Processing:

Concepts and Techniques. Morgan Kaufmann, 1993.

• Philip Bernstein et al. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, 1987.

Checkpoint 1: Project Groups: Done!

Checkpoint 2: Project Proposal

• Due today (Wednesday, 03/04)

• Should be about 1 page in length.

• Suggested content:

 -title and group members

 -short description of the project

 -list any interesting issues or unanswered questions

 -expected responsibilities/deliverables for each group member

 -important: tools and datasets you are planning to use

• Submit in class or by email

Next Class

• Continue transactions

• Work on project checkpoints 3 and 4

