_ecture 13:
Continuing Transactions

Wednesday, March 4, 2015



Agenda

* Discuss any issues with HW #3
 Continue transactions

« Work on project proposal (Checkpoint #2)



Review: ACID Properties

« Atomicity = A tx’s operations either happen in their entirely or
not at all. There are only two outcomes (commit or rollback).

« Consistency = If the database satisfies the constraints at the
beginning of the tx, and if the application is written correctly,
then the constraints must hold at the end of the tx. The duty of
the tx is to ensure that the database remains consistent.

« |solation = Although a tx can be interleaved with other txs, it
executes in isolation. There is no interference from other txs.

« Durability = Txs have to persist their updates to disk (not just
main memory).



Transaction Definitions

 From the application-level:

-- A transaction = one or more operations, which represents a
logical unit of work. This logical unit of work cannot be broken
up into smaller units without potentially compromising
the integrity of the database.

 For the DBMS-level:
-- A transaction = a sequence of read and/or write operations



Concurrency Control

« The Problem:
-- A transaction can perform many updates
-- For efficiency reasons, we can’t wait for one tx to complete
before starting another tx
-- How can we allow txs to be interleaved without letting them
hurt one another?

« The Solution:
-- Use a scheduler to decide which tx goes next
-- A schedule is a sequence of interleaved actions from all
transactions
-- Our goal is to understand what makes a good schedule



Serializable Schedule

A schedule is serializable if it is
equivalent to a serial schedule




Running example

T1 T2
READ(A, X) READ(A, y)
X :=x+100 y = y*2
WRITE(A, X) WRITE(A,y)
READ(B, Xx) READ(B,y)
X :=x+100 y = y*2
WRITE(B,X) WRITE(B,y)

Want to construct a schedule for these two independent txs, T1
and T2



A Serial Schedule

T1 T2

READ(A, X)

X :=x+100

WRITE(A, X)

READ(B, Xx)

X := x+100

WRITE(B,X)
READ(A,y)
y :=y*2
WRITE(A,y)
READ(B,y)
y = y*2
WRITE(B,y)




A Serializable Schedule

T1 T2

READ(A, X)

X := x+100

WRITE(A, X)
READ(AY)
y (= y*2
WRITE(A,y)

READ(B, x)

X :=x+100

WRITE(B,X)
READ(B,y)
y (= y*2

WRITE(B,y)

Question: what efficiencies
do we gain with this schedule?



Another Serializable Schedule

T1 T2
READ(A, X)
X :=x+100
WRITE(A, X)
READ(B, x) READ(A)Y)
X :=x+100 y = y*2
WRITE(B,X) WRITE(A)Y)
READ(B,y)

y = y*2
WRITE(B,y)




A Non-Serializable Schedule

T1 T2

READ(A, X)

X = x+100

WRITE(A, X)
READ(AY)
y =y*2
WRITE(A,y)
READ(B,y)
y =y*2
WRITE(B,y)

READ(B, x)

X := x+100

WRITE(B,X)




Conflicting actions

Two actions belonging to same tx: r(X); wy(Y)

Two writes by T, and T, to same record: | w;(X); W,(X)

Read/write by T, and T, to same record: | w,(X); r,(X)

r1(X); wy(X)

In other words, two actions conflict if they involve the same record
and at least one of them is a write.

A serializable schedule is derived by swapping the non-conflicting
actions of multiple concurrent txs (e.g. reads on the same record,
reads and writes on different records).



[TX DEMO]



Reflections

 The demo showed that when tx T2 tried to update the same
record as tx T1, T2’s update hung until T1's commit.

Question: Is this behavior expected?

Ans: Yes, this shows the effects of serializing writes to the
same record.



Reflections

 The demo showed that during an update by T1, T2 was
able to read the same record that T1 was modifying.

Question: Which value of the record did T2 read?

Ans: T2 read the last committed value of the record (not
the dirty value that T1 was actively modifying).

» Observation: T2's read did not hang the way it did during
the conflicting write. This implies that write-read conflicts
are resolved by the DBMS. How?

Ans: This is done using Multiversion Concurrency Control
(MVCO).

Question: what side-effects can MVCC have?



Rolled-back Transactions

 Rollbacks initiated by application:
-- Rollback when user cancels an operation
-- Rollback if one or more constraints are not satisfied

* Rollbacks initiated by DBMS:
-- Rollback when database aborts
-- Rollback when there is a deadlock condition
-- Rollback when there is a timeout

« Schedules with Rolled-back Transactions
-- When a tx rolls back, the recovery manager undoes its
updates
-- But some of its updates may have affected other txs!



Issues with Rollback

T1 T2

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)
Commit

Rollback




Recoverable Schedule

A schedule is recoverable If:

* Itis serializable

 Whenever a tx T commits, all txs that have written
records read by T have already committed




Non-Recoverable and Recoverable Schedules

Schedule A: non-recoverable

Schedule B: recoverable

T1 T2

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)
Commit

Rollback

T1 T2

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)
Rollback

Rollback




Optional References

« Jim Gray and Andreas Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

« Philip Bernstein et al. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.



Checkpoint 1: Project Groups: Done!

Grp Members
1 Matthew Egbom, Jewel Langevine, and Lerone Williams
2 | Nathan Waters and Nur Ridzuan
3 Steve Franklin, Sadie Sublousky, and Tien-Yu Huang
4 | Mills Hill
2 | Alexander Crompton and Jacob Rachiele
6 | Mitali Sathaye
7 Nikolaj Plagborg-Moller and Fabiana Latorre
8 | Hannah Jane DeCiutiis, Kathryn McDermott, and Esther Schenau
9 Khang Phamand Don Pham
10 | Alexia Mercado and Cyndia Munoz
11 | Thomas Johnson and John Loftin
12 | Ross Yudkin, Kurt Probe, and Andrew Chang-Gu
13 | Tianxiang Zhang, Xiaolin Lu, and Happy Situ
14 | Kaitlin Vanderlaan, Julia Haschke, and Sarah Luna
15 | Bnan Huang, Sergio Mier, and Jun-Bo Shim
16 | Jose Cortez, David Hermmandez, and Tara Woolheater
17 | Kem Gner and Chris Oballe
186 | Matthew Jones, Thomas Reay, and Brooke Noble
19 | Seata Moji and Alexander Thola
20 | Hyun Seo and Parth Patel
21 | Yifang Peng and Jiannan Zhang
22 | Dustin Dies, Sreejon Sen, and Huynh Lam
23 | Cameron Miller, Jorge Paramo, and Kyle Kerr
24 | Humza Rashid, Mark Slater, and Matthew Mcnair
25 | Robert Mcneil and Zachary Williams
26 | Bailey Lund, Knistine Chen, and Irene Jea
27 | Damilola Shonaike and Bryan Landes




Checkpoint 2: Project Proposal

Due today (Wednesday, 03/04)
Should be about 1 page in length.
Suggested content:
-title and group members
-short description of the project
-list any interesting issues or unanswered questions
-expected responsibilities/deliverables for each group member
-important: tools and datasets you are planning to use
Submit in class or by emalil



Next Class

« Continue transactions
 Work on project checkpoints 3 and 4



