
Lecture 16: Views

Wednesday, March 25, 2015

Where We Are

• Today: Views and Quiz #5

• Next week: project presentations

• Should we have a “Best Demo Award”?

Views

• Views are like procedures in SQL

• They are defined by a SQL query

• They return a table of results from the SQL query

Example view:

Employees(ssn, first_name, last_name, role, title, salary)

CREATE VIEW Senior_Staff AS

 SELECT ssn, first_name, last_name, role, title, salary

 FROM Employees

 WHERE title LIKE ‘%Senior%’

 ORDER BY salary

Senior_Staff(ssn, first_name, last_name, title, salary) = virtual table

We can now use the Senior_Staff view as if it were a table

CREATE VIEW Customer_Sales AS

 SELECT o.customer_id, i.sale

 FROM Orders o, Items i

 WHERE o.item_id = i.id

Another View

Orders(order_id, customer_id, item_id, store)

Items(id, item_name, price)

Customer_Sales(customer_id, sale) = virtual table

SELECT c.customer_id, c.sale, o.store

FROM Customer_Sales c, Orders o

WHERE c.customer_id = o.customer_id

AND c.sale > 100

Using the view:

Question: How will this query be computed?

Query Modification

SELECT c.customer_id, c.sale, o.store

FROM Customer_Sales c, Orders o

WHERE c.customer_id = o.customer_id

AND c.sale > 100

Using the view:

SELECT c.customer_id, c.sale, o.store

FROM (SELECT x.customer_id, y.sale,

 FROM Orders x, Items y

 WHERE x.item_id = y.id) c, Orders o

WHERE c.customer_id = o.customer_id

AND c.sale > 100

Modified query (at runtime):

CREATE VIEW Customer_Sales AS

 SELECT o.customer_id, o.store, i.sale

 FROM Orders o, Items i

 WHERE o.item_id = i.id

Another Use of the View

Orders(order_id, customer_id, item_id, store)

Items(id, item_name, price)

Customer_Sales(customer_id, sale) = virtual table

SELECT c.customer_id

FROM Customer_Sales

WHERE c.store = ‘CVS’

Using the view:

Questions: Which table(s) will be used to answer this query?

Note that here we don’t want to inline the view definition. Why?

Types of Views

• Virtual views:

– computed only on-demand

– always up-to-date

• Materialized views:

– pre-computed offline

– requires extra storage

– may be out-of-date with the base tables

Applications of Views

• Logical Data Independence

 (recall: Physical Data Independence)

• Optimizations

- vertical partitioning

- horizontal partitioning

• Security

- controlled access to attributes and records

CREATE VIEW Students_View AS

 SELECT s.eid, s.first_name, s.middle_initial,

 s.last_name, p.photo, p.date_taken

 FROM Students s, Student_Photo p

 WHERE s.eid = p.eid

Vertical Partitioning

Students(eid, first_name, middle_initial, last_name)

Students_Photo(eid, photo, date_taken)

SELECT eid, middle_initial, last_name

FROM Students_View

WHERE first_name = ‘Kai’

Using the view:

Question: Which table(s) will be used to answer this query?

CREATE VIEW Students_Photo_2014_2015 AS

 SELECT eid, photo, date_taken

 FROM Student_Photo_2014 UNION

 SELECT eid, photo, date_taken

 FROM Student_Photo_2015

Horizontal Partitioning

Students(eid, first_name, middle_initial, last_name)

Students_Photo_2014(eid, photo, date_taken)

Students_Photo_2015(eid, photo, date_taken)

SELECT s.eid, s.first_name, s.middle_initial, s.last_name,

 p.photo, p.date_taken

FROM Students s, Students_Photo_2014_2015 p

WHERE s.eid = p.eid

AND p.date_taken <= ‘15-SEP-2014’

Using the view:

Question: Which table(s) will be used to answer this query?

Security Views

Employees(ssn, first_name, last_name, role, title, salary)

Question: what data do these two views hide?

CREATE VIEW All_Employee_View AS

 SELECT first_name, last_name, role, title

 FROM Employees

 ORDER BY last_name, first_name

CREATE VIEW HR_Employee_View AS

 SELECT ssn, first_name, last_name, role, title, salary

 FROM Employees

 WHERE role <> ‘Executive’

 ORDER BY last_name, first_name

Quiz #5 (on Indexes)

Consider the following Movies table:

Movies(id NUMBER, name VARCHAR(64), year NUMBER, runtime

 NUMBER, rating NUMBER)

Assume that this table contains about 50 million records and it will be

updated with new movie records as they are released.

In addition, there are six queries that run frequently on this table and that

you are tasked with optimizing. These queries comprise the "typical"

workload.

1. SELECT name FROM Movies WHERE year = 2015;

2. SELECT * FROM Movies WHERE year = 2015 AND rating BETWEEN 7 AND 10;

3. SELECT * FROM Movies WHERE rating = 10;

4. SELECT rating, COUNT(*) FROM Movies GROUP BY rating ORDER BY rating;

Quiz #5 (Continued)

5. SELECT DISTINCT year FROM Movies;

6. SELECT * FROM Movies;

For simplicity, assume that the frequency of all six queries is roughly the

same.

For each SQL query, decide if a B+ tree index can be used to speed up the

query and provide the create index statement for the suggested index. Try

to reuse an index whenever it makes sense and avoid creating redundant

indexes. If an index can't be used to speed up a given query, briefly state

why and what access path should be used instead.

Next 3 Classes

• Project Presentations

• No quizzes :))

