CS 327E Lecture 1

Shirley Cohen

January 25, 2016

Agenda

- Announcements
- Homework for today
- Reading Quiz
- Concept Questions
- Homework for next time

Announcements

- Reading quizzes and class participation grades
- Absences
- Eric's office hours will be Fridays 12:00pm 2:00pm in GDC 2.112
- Daniel's office hours will be Tuesdays 1:30pm 3:00pm in GDC 3.302
- Please review Eric's MySQL install instructions for OS X
- Please go see Daniel or Eric during their office hours you are still not able to get MySQL server installed on your machine

Homework for Today

- Read Chapter 2 from the <u>Learning SQL</u> book
- Installed MySQL server on your machine
- Created the bank database
- Populated the bank database

Although the text is system-agnostic, what relational database system is used in the examples of Beaulieu's *Learning SQL*?

- A. PostgreSQL
- B. MySQL
- C. Microsoft SQL Server
- D. Oracle Database

What MySQL data type is used to store fixed-length strings?

- A. CHAR
- B. VARCHAR
- C. STRING
- D. STR

Why would you choose a TIMESTAMP over a DATE type?

- A. TIMESTAMP is more precise than a DATE
- B. Only for representing the time
- C. TIMESTAMP is for representing a date and time (year, month, day, hour, minute, second) while DATE is for representing a date (year, month, day)
- D. Never—DATE should always be used instead of TIMESTAMP

What SQL statement would you use to create a new row in a table?

- A. APPEND
- B. NEW
- C. INSERT
- D. ALTER

Below is the output from executing a MySQL command:

mysql> ???????????					
Field	Type	 Null +	Key	 Default +	Extra
branch_id name address city state zip	smallint(5) unsigned varchar(20) varchar(30) varchar(20) varchar(2) varchar(12)	NO NO YES YES YES YES	PRI 	NULL NULL NULL NULL NULL	auto_increment

What is the command that was executed?

- A. SHOW CUSTOMER;
- B. DESCRIBE CUSTOMER;
- C. SELECT * FROM CUSTOMER;
- D. UPDATE CUSTOMER;

Basic Concepts

- Relational model
- Relation / Entity / Table
- Field / Attribute / Column
- Row / Tuple / Record
- Cell / Value
- Primary key
- Composite primary key
- Foreign key
- Constraint

Product

<u>PName</u>	Price	Category	Manufacturer
iPhone	\$119.99	Cellphone	Apple
Android	\$299.99	Cellphone	Samsung
iPad	\$149.99	Tablet	Apple
iClicker	\$20.99	Classroom	iClicker

Tables Explained

- A tuple = a record
- A table = a set of records
- The schema of a table is the table name and attributes
- A key is an attribute whose value is unique (by convention, we underline the key)

Common Data Types

- CHAR, VARCHAR
- INT
- DOUBLE, FLOAT
- DATE, DATETIME
- BLOB, CLOB

Constraint types

- NOT NULL constraint
- Unique constraint
- Primary and foreign key constraint
- Check constraint

Relationships between Tables

- One-to-many relationship
- One-to-one relationship
- Many-to-many relationship

Principle of Data Independence

- Physical data independence
- Logical data independence

Examples:

- Adding / dropping a column
- Adding / dropping an index

SQL Introduction

Standard language for querying and manipulating data

Structured Query Language

Many standards out there:

- ANSI SQL
- SQL92 (a.k.a. SQL2)
- SQL99 (a.k.a. SQL3)
- Vendors support various subsets of these
- · What we discuss is common to all of them

Data Manipulation Language (DML) statements

- SELECT
- INSERT/UPDATE/DELETE

Data Definition Language (DDL) statements

- CREATE/ALTER/DROP
- GRANT/REVOKE

Concept Question 1

How can Alice's record be deleted from the Persons table?

- A. Delete Persons record where person_id = 100
- B. Delete Persons record where person_id = 100 and then delete Favorite_Music records where person_id = 100
- C. Delete Favorite_Music records where person_id = 100 and then delete Persons records where person_id = 100
- D. Either B or C
- E. None of the above

```
create table Persons
(
  person_id SMALLINT(4) PRIMARY KEY,
  first_name VARCHAR(20),
  last_name VARCHAR(20),
  birth_date DATE
)
```

person_id	first_name	last_name	birth_date
100	Alice	Richardson	1990-05-01
200	Carter	Willis	1982-01-27

```
create table Favorite_Music
(
    song_id SMALLINT,
    person_id SMALLINT,
    contraint pk_fav_music primary key (person_id, song_id),
    constraint fk_person_id foreign key (person_id)
    references Persons (person_id)
)
```

song_id	person_id
40	100
41	100

Homework for Next Time

- Chapter 3 from the <u>Learning SQL</u> book
- Exercises at the end of Chapter 3