
CS 327E Lecture 3

Shirley Cohen

February 1, 2016

Agenda

• Announcements

• Homework for today

• Reading Quiz

• Concept Questions

• Homework for next time

Announcements

• Class participation points

• Midterm #1 will take place on 02/17

• Short review on 02/15

Homework for Today

• Chapter 4 from the Learning SQL book

• Exercises at the end of Chapter 4

Quiz Question 1

Which of the following operators may not be used to separate
conditions in a WHERE clause?

A. ALL

B. AND

C. OR

D. All of the above operators may be used.

Quiz Question 2

How many rows does the following query return?
SELECT * FROM account

WHERE open_branch_id = NULL;

A. 0 B. 2 C. 3 D. 4

mysql> select * from account;

+------------+----------------+---------------+

| account_id | open_branch_id | avail_balance |

+------------+----------------+---------------+

| 1 | 2 | 1057.75 |

| 2 | NULL | 500.00 |

| 3 | NULL | 3000.00 |

| 4 | 0 | 2258.02 |

+------------+----------------+---------------+

Quiz Question 3

Which of the following queries filters rows with a start_date

between January 1, 2007 and January 1, 2008?

A. IF start_date > ‘2007-01-01’ AND start_date <

‘2008-01-01’ THEN SELECT * from employee;

B. SELECT * FROM employee WHERE start_date >

‘2007-01-01’ AND < ‘2008-01-01’;

C. SELECT * FROM employee WHERE start_date

BETWEEN ‘2007-01-01’ AND ‘2008-01-01’;

D. None of the above.

Quiz Question 4

mysql> select fname, lname

from employee;

+----------+-----------+

| fname | lname |

+----------+-----------+

| Michael | Smith |

| Susan | Barker |

| Susan | Hawthorne |

| Sarah | Parker |

| Jane | Grossman |

| Paula | Roberts |

| Thomas | Ziegler |

| Samantha | Jameson |

| Frank | Portman |

| Theresa | Markham |

| Alex | Barth |

+----------+-----------+

How many rows are produced from the

following query?

SELECT fname

FROM employee

WHERE fname like ‘%a%’;

A. 0

B. 3

C. 7

D. 10

Concept Question 1

Recall the retail store that keeps information about its

products in a table called SKU_Data. How can we look up all

the products that are sold by the camping department or

climbing department?

A. SELECT * FROM SKU_Data

WHERE Department =

‘Camping’ OR ‘Climbing’

B. SELECT * FROM SKU_Data

WHERE Department IN

(‘Camping’, ‘Climbing’)

C. SELECT * FROM SKU_Data

WHERE Department =

‘Camping’ OR

Department = ‘Climbing’

D. All of the above

E. Only B and C

SKU_Data (SKU, SKU_Description, Department)

SELECT * FROM SKU_Data

Concept Question 2

We have extended the retail store schema to allow tracking the vendors who supply

products to the store. We want to obtain a list of the vendors, but we are only

interested in those who are in Austin. What SQL query can we use to retrieve all

vendors that have a presence in Austin?

A. select vendName

from vendors

where vendCity = ‘AUSTIN’

B. select vendName

from vendors

where vendCity = ‘Austin’

C. select vendName

from vendors

where UPPER(vendCity) =

‘AUSTIN’

D. Any of the above

E. Not enough information

Concept Question 3

Continuing with the same example database, we now want to see a list of all vendors

who are not based in Austin. Which SQL query will give us the answer?

A. select vendName

from vendors

where UPPER(vendCity) !=

‘AUSTIN’

B. select vendName

from vendors

where UPPER(vendCity) <>

‘AUSTIN’

C. select vendName

from vendors

where UPPER(vendCity) <>

‘AUSTIN’ or vendCity is null

D. Any of the above

E. None of the above

Concept Question 4
Suppose we have a pool of printers and a set of registered users who have been

given access to a printer. We now want to allow a guest user who is not in the table to

use one of the common printers. How can we come up with a table definition that lets

us assign common printers to guest users without losing existing functionality?

Hint: we want the same SQL query that works for registered users to also work for

guest users and we want the load balancing logic for common printers to reside in the

database.

A. (printer_name,

printer_description,

printer_type, userid)

B. (printer_name,

printer_description,

userid_start,

userid_end)

C. (printer_name,

printer_description,

registered_userid,

guest_userid)

D. None of the above

Current table definition:

create table PrinterControl

(

printer_name CHAR(4) PRIMARY KEY,

printer_description CHAR(4),

userid CHAR(10)

)

select * from PrinterControl

printer_name printer_description userid

'LPT1' 'First floor's printer' 'blake'

'LPT2' 'Second floor's printer' 'lee'

'LPT3' 'Third floor's printer' 'smith'

'LPT4' 'Common printer for new user' NULL

'LPT5' 'Common printer for new user' NULL

Solution for Concept 4
Previous table definition:

create table PrinterControl

(

printer_name CHAR(4) PRIMARY KEY,

printer_description CHAR(4),

userid CHAR(10)

)

New table definition:

create table PrinterControl

(

printer_name CHAR(4) PRIMARY KEY,

printer_description CHAR(4),

userid_start CHAR(10),

userid_end CHAR(10)

)

printer_name printer_description userid_start userid_end

'LPT1' 'First floor's printer' 'blake' 'blake'

'LPT2' 'Second floor's printer' 'lee' 'lee'

'LPT3' 'Third floor's printer' 'smith' 'smith'

'LPT4' 'Common printer for new user' 'a' 'l'

'LPT5' 'Common printer for new user' 'm' 'z'

Query over new table:

SELECT printer_name

FROM PrinterControl

WHERE $userid BETWEEN userid_start

AND userid_end;

Concept Question 5

Suppose we have a database that tracks software bugs.

What is the relationship between the Bugs entity and the

other entities according to the conceptual diagram?

A. Bugs has a many-to-one

relationship with Accounts

B. Bugs has a one-to-many

relationship with Comments

C. Bugs has a many-to-many

relationship with Products

D. Bugs has a one-to-many

relationship with

BugsProducts

E. All of the above

Concept Question 6

How can we find all the bugs that are both unassigned and active?
Assume that the assigned_to field identifies if a bug has been

assigned and an active bug equals status of not ‘CLOSED’.

A. select * from Bugs

where assigned_to IS NULL

and (status <> ‘CLOSED’

or status IS NULL)

B. select * from Bugs

where assigned_to IS NULL

and status <> ‘CLOSED’

C. select * from Bugs

where assigned_to = NULL

and (status <> ‘CLOSED’

or status = NULL)

D. select * from Bugs

where assigned_to IS NULL

and status NOT IN

(‘CLOSED’)

E. None of the above

Table definitions:

CREATE TABLE Accounts (

account_id INT PRIMARY KEY,

account_name VARCHAR(20),

first_name VARCHAR(20),

last_name VARCHAR(20),

email VARCHAR(100),

password_hash CHAR(64),

...);

CREATE TABLE Bugs (

bug_id INT PRIMARY KEY,

date_reported DATE NOT NULL,

summary VARCHAR(80),

reported_by INT NOT NULL,

assigned_to INT,

status enum('NEW', 'OPEN', 'QA', 'CLOSED'),

...

FOREIGN KEY (reported_by) REFERENCES

Accounts(account_id),

FOREIGN KEY (assigned_to) REFERENCES

Accounts(account_id));

Homework

• Read chapter 5 from the Learning SQL book

• Exercises at the end of chapter 5

