Where we are

• Phase 1: SQL
• **Phase 2: Database Design**
• Phase 3: Database-Intensive Applications
Reminders

• Homework: assigned chapters from design book
• Reading quiz at start of class
• Next midterm exam: Wednesday, March 9th
Heads-up

- Phase 2: Participation points to include in-class exercises.
- Phase 3: Build a **cool** database app in groups of 2-3.

 Start thinking of ideas now.

 Project guidelines will be discussed on 03/21.
Key Concepts

A *data model* is a collection of concepts for describing data.

A *schema* describes the structure of the data for a given data model.
Diversity of Data

Structured (schema-first)
- Relational Database
- Formatted Messages

Semi-Structured (schema-later)
- Documents
- XML
- Tagged Text/Media

Unstructured (schema-never)
- Plain Text
- Media
NoSQL Systems

<table>
<thead>
<tr>
<th></th>
<th>Data Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassandra</td>
<td>Columnfamily</td>
</tr>
<tr>
<td>CouchDB</td>
<td>Document</td>
</tr>
<tr>
<td>HBase</td>
<td>Columnfamily</td>
</tr>
<tr>
<td>MongoDB</td>
<td>Document</td>
</tr>
<tr>
<td>Neo4J</td>
<td>Graph</td>
</tr>
<tr>
<td>Redis</td>
<td>Collection</td>
</tr>
<tr>
<td>Riak</td>
<td>Document</td>
</tr>
<tr>
<td>Scalaris</td>
<td>Key/value</td>
</tr>
<tr>
<td>Tokyo Cabinet</td>
<td>Key/value</td>
</tr>
<tr>
<td>Voldemort</td>
<td>Key/value</td>
</tr>
</tbody>
</table>
Design Process

Phase 1: Requirements Analysis
Phase 2: Conceptual Modeling
Phase 3: Physical Modeling
Phase 4: Normalization

Note: Iteration is key throughout the process, especially between phases 1 - 2 and phases 3 - 4.
Basic Constructs

Entity = an object of interest

Attribute = property of an entity

Relationship = association between one or more entities

Relationship types:

• one-to-one:

• one-to-many:

• many-to-one:

• many-to-many:
Advanced Constructs

• Supertypes
• Subtypes

We will study hierarchies next week.
Diagram Notation

- ER diagraming tools use Chen’s crow-foot notation
- UML class notation used by our book

Know how to read both notations; use only one type per diagram.
University Example: v2

Enrollment Schema

student_dimension
- student_id INT(11)
- effective_date DATE
- name VARCHAR(45)
- title VARCHAR(45)
- street VARCHAR(45)
- city VARCHAR(45)
- state CHAR(2)
- postal_code VARCHAR(10)
- banner_id VARCHAR(45)
- expiration_date DATE
- most_recent_version CHAR(15)

enrollment_change_facts
- student_id INT(11)
- class_id INT(11)
- enrollment_status_key INT(11)
- term_code INT(11)
- effective_date DATE
- expired_date DATE

enrollment_status
- status_code INT(11)
- status_value VARCHAR(30)

Indexes

term_dimension
- term_code INT(11)
- semester CHAR(11)
- year INT(11)
- start_date DATE

Indexes

class_dimension
- class_id INT(11)
- course_code CHAR(10)
- instructor_id CHAR(20)
- term_code INT(11)

Indexes

instructor_dimension
- instructor_id CHAR(20)
- name VARCHAR(30)
- title INT(11)
- street VARCHAR(30)
- state CHAR(2)
- postal_code VARCHAR(10)
Description of Data Model:

This document contains some explanatory notes for the Recruitment and Enrollment schema diagrams.

Entities of Note:

-A Student in this data model is defined as anyone who expresses an interest in attending the university. It doesn’t have to be someone who is enrolled in a course. We are adopting a broad definition of a student in order to reuse the same Student Dimension table across the entire lifecycle of a Student.

-A record in the Recruitment Fact table represents a single occurrence of a recruiting event. An event is defined as a event type, event date pair. The type of event is specified by the event_type_key field, which links to a separate lookup table Event_Type that contains a list of valid event types. Examples include: inquiries, open houses, partner events, etc.

-A record in the Application Fact table represents an instance of an application. An application cycle has several important milestones, such as app start, app submit, app confirm, app accept, etc. The presence of a date value indicates that the application has reached that particular milestone. For example, if an application has a value for date_confirmed, but no value for date_enrolled, this means that the applicant has not yet enrolled. Note that the precise enrollment history of a student is captured in the separate Enrollment_Change_Facts.

-A record in the Enrollment_Change_Facts table represents a class enrollment status change pertaining to a student, program, and term. Examples of a status changes include adding, dropping and withdrawing from a class.

-A Class is a unique instance of a Course. More precisely, it represents the relationship between a course, instructor and a term. Therefore, students are enrolled in classes and instructors also teach classes. For these reasons, an Enrollment_Change_Fact record links to a Class, not a Course.
HR Example: v1
HR Example: v2
HR Example: v3
Payroll Example: v1
Payroll Example: v2
Product Catalog Example: v1
Product Catalog Example: v2

Diagram showing relationships between:
- Product Line
 - Product Line ID
 - Product Line Name
- Property Type
 - Property Type ID
 - Property Name
 - Property Data Type
- Product
 - Product ID
 - Product Name
 - Product Description
 - List Price
 - Product Line ID (FK)
- Property Applicability
 - Property Type ID (FK)
 - Product Line ID (FK)
- Product Property Value
 - Product Property ID
 - Product ID (FK)
 - Property Type ID (FK)
 - Display Order Number
 - PropertyValue
Product Line

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Apparel</td>
</tr>
<tr>
<td>104</td>
<td>Food Products</td>
</tr>
</tbody>
</table>

Property Type

<table>
<thead>
<tr>
<th>Prop. Type ID</th>
<th>Prop. Name</th>
<th>Prop. Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10001</td>
<td>Size</td>
<td>String</td>
</tr>
<tr>
<td>P10005</td>
<td>Garment Type Name</td>
<td>String</td>
</tr>
<tr>
<td>P10012</td>
<td>Calorie Count</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Property Type Applicability

<table>
<thead>
<tr>
<th>Prod. Line ID</th>
<th>Prop. Type ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>P10001</td>
</tr>
<tr>
<td>101</td>
<td>P10005</td>
</tr>
<tr>
<td>104</td>
<td>P10001</td>
</tr>
<tr>
<td>104</td>
<td>P10012</td>
</tr>
</tbody>
</table>

Product

<table>
<thead>
<tr>
<th>Prod. ID</th>
<th>Prod. Name</th>
<th>Prod. Description</th>
<th>List Price</th>
<th>Prod. Line ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1254678</td>
<td>ComfoSteer Glove</td>
<td>Men’s leather driving glove</td>
<td>22.99</td>
<td>101</td>
</tr>
<tr>
<td>3549076</td>
<td>CalDry Apricots</td>
<td>Dried California apricots</td>
<td>3.25</td>
<td>104</td>
</tr>
</tbody>
</table>

Product Property Value

<table>
<thead>
<tr>
<th>Prod. Prop. ID</th>
<th>Prod. ID</th>
<th>Prop. Type ID</th>
<th>Display Order Num.</th>
<th>Prop. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>33341461</td>
<td>1254678</td>
<td>P10001</td>
<td>2</td>
<td>Large</td>
</tr>
<tr>
<td>86743573</td>
<td>1254678</td>
<td>P10005</td>
<td>1</td>
<td>Men’s gloves</td>
</tr>
<tr>
<td>77303926</td>
<td>3549076</td>
<td>P10001</td>
<td>1</td>
<td>6 oz.</td>
</tr>
<tr>
<td>96901490</td>
<td>3549076</td>
<td>P10012</td>
<td>2</td>
<td>110</td>
</tr>
</tbody>
</table>
Hockey Example
Salesforce Data Model

The entity relationship diagrams (ERDs) for standard Salesforce objects in this section illustrate important relationships between objects. The available ERDs are:

- **Sales Objects**—includes accounts, contacts, opportunities, leads, campaigns, and other related objects
- **Task and Event Objects**—includes tasks and events and their related objects
- **Support Objects**—includes cases and solutions and their related objects
- **Salesforce Knowledge Objects**—includes view and vote statistics, article versions, and other related objects
- **Document, Note, and Attachment Objects**—includes documents, notes, and attachments and their related objects
- **User, Sharing, and Permission Objects**—includes users, profiles, and roles
- **Profile and Permission Objects**—includes users, profiles, permission sets, and related permission objects
- **Record Type Objects**—includes record types and business processes and their related objects
- **Product and Schedule Objects**—includes opportunities, products, and schedules
- **Sharing and Team Selling Objects**—includes account teams, opportunity teams, and sharing objects
- **Customizable Forecasting Objects**—includes forecasts and related objects
- **Forecasts Objects**—includes objects for Collaborative Forecasts
- **Territory Management**—includes territories and related objects
- **Process Objects**—includes approval processes and related objects
- **Content Objects**—includes content and libraries and their related objects
- **Chatter Feed Objects**—includes objects related to feeds
- **Work.com Badge and Reward Objects**—includes badge and reward objects
- **Work.com Feedback and Performance Cycle Objects**—includes feedback and performance cycle objects

Reference: http://tinyurl.com/z6t6qs4
Salesforce Data Dictionary

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CampaignMemberStatus</td>
<td>A status value associated with a Campaign.</td>
</tr>
<tr>
<td>CampaignOwnerSharingRule</td>
<td>Represents the rules for sharing a Campaign with User records other than the owner.</td>
</tr>
<tr>
<td>CampaignShare</td>
<td>Represents a list of access levels to a Campaign along with an explanation of the access level. For example, if you have access to a record because you own it, the Access Level value is Full and Reason for Access value is Owner.</td>
</tr>
<tr>
<td>CampaignTag</td>
<td>Associates a word or short phrase with a Campaign.</td>
</tr>
<tr>
<td>Case</td>
<td>A customer issue such as a customer’s feedback, problem, or question.</td>
</tr>
<tr>
<td>CaseArticle</td>
<td>Represents the association between a Case and a KnowledgeArticle. This object is available in API version 20.0 and later.</td>
</tr>
<tr>
<td>CaseComment</td>
<td>A comment that provides additional information about the associated Case.</td>
</tr>
<tr>
<td>CaseContactRole</td>
<td>The role that a given Contact plays on a Case.</td>
</tr>
<tr>
<td>CaseFeed</td>
<td>Represents a single feed item in the feed displayed on the detail page for a case record. This object is available in API version 18.0 and later.</td>
</tr>
<tr>
<td>CaseHistory</td>
<td>Historical information about changes that have been made to the associated Case.</td>
</tr>
<tr>
<td>CaseMilestone</td>
<td>Represents a milestone (required step in a customer support process) on a Case. This object is available in API version 18.0 and later.</td>
</tr>
<tr>
<td>CaseOwnerSharingRule</td>
<td>A rule that grants access to a case to users other than the owner.</td>
</tr>
</tbody>
</table>

Reference: http://tinyurl.com/z6t6qs4
Design Tips

• **Tip 1.** Clearly state the database requirements: what data and updates go into the database and what data and queries come out of the database.

• **Tip 2.** Best order of modeling: 1-entities, 2-relationships, 3-attributes and 4-user views.

• **Tip 3.** Keep ER diagram to one page. Accompany diagram with descriptions, assumptions and explanation in supporting a document.

• **Tip 4.** Interact frequently with end-users.
In-Class Exercise

Goal: Design a schema for a Personal Time Assistant.

A Personal Time Assistant is a database that solves the problem of time-management by helping us track our time commitments and making sure that they happen.

High-level system requirements:

1. Represents every type of commitment that competes for your time.

2. Represents temporal scope of a commitment. For example: “I intend to ride my bike for 2-3 hours sometime this weekend”.

3. Schedules tasks (and other commitment types) and monitors their progress until they get done.

4. Corrects common mistakes (e.g. procrastination and over-estimating future availability).
Homework for Next Time

• Read chapters 4 and 5 from the Beginning Database Design book
• Exercises at the end of chapters
Resources & References

• Lots of common entity types (e.g. Customer, Product, Event, etc.): http://schema.org

• ER diagramming tools: MySQL Workbench and LucidChart
