Agenda

• Announcements
• Readings for today
• Reading Quiz
• Concept Questions
• Homework for next time
Homework for Today

- Chapters 4 and 5 from the *Beginning Database Design* book
- Exercises at the end of Chapters 4 and 5
Quiz Question 1

What does the diagram on the right represent?

A. The Plant Entity/Class/Table
B. The relationship between plantID and common_name
C. The Plant relationship with different cardinalities
D. None of the above
What is the correct interpretation of the picture depicted above?

A. Each **Foo** is associated with at least one **Bar**, while a **Bar** may optionally be related to a **Foo**.

B. Each **Foo** may be associated with at most one **Bar**, while each **Bar** is associated with at least one **Foo**.

C. Each **Foo** is optionally associated with a **Bar** and vice versa.

D. None of the above.
Quiz Question 3

Which one of the following is not a relationship with a cardinality of 1 at one end?

A. A room has one guest
B. A department has one manager
C. A faculty member is affiliated with one institution
D. A farm is associated with one farming type at a time
E. An author writes one book
Quiz Question 4

Consider the relationship between Member and Sponsor depicted in the picture. If Jim sponsors one member to the club and he is himself a member, how many records of Jim will there be in the database?

A. < 2
B. 2
C. > 2
A.	It doesn’t tell us what group(s) an employee belongs to
B.	It doesn’t tell us what employees belong to a group
C.	It can lead to the false conclusion that an employee belongs to all the groups that are in his/her division
D.	All of the above
Survey Question 1

Have you used git or GitHub before?

A. Yes
B. No

This question will **not** be graded. It is intended for informational purposes only. Your answer will help us better plan the Project Phase for this class.
Survey Question 2

What is your level of expertise with Python?

A. Expert
B. Advanced
C. OK
D. Basic
E. What is Python?

This question will **not** be graded. It is intended for informational purposes only. Your answer will help us better plan the Project Phase for this class.
Design War Stories: Learning from Failure
What's wrong with this table design?

CREATE TABLE Products
(
 product_id INT PRIMARY KEY,
 product_name VARCHAR(1000),
 contact_id VARCHAR(100), -- comma-separated list
 ...
)
INSERT INTO Products (product_id, product_name, account_id) VALUES (1037, 'Apple Watch', '100,501,755');

A. Can't join on contact_id
B. Can't aggregate on the list of contacts
C. Can't use the delete operation to remove a contact
D. Lost referential integrity on contact_id
E. All of the above
Concept Question 2

This intersection table represents a many-to-many relationship between a table of articles and a table of tags. What’s wrong with the table design?

CREATE TABLE ArticleTags
(
 id SERIAL PRIMARY KEY,
 article_id INT NOT NULL,
 tag_id INT NOT NULL
 FOREIGN KEY (article_id) REFERENCES Articles(id),
 FOREIGN KEY (tag_id) REFERENCES Tags(id)
)

Sample records:

<table>
<thead>
<tr>
<th>id</th>
<th>tag_id</th>
<th>article_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>327</td>
<td>1234</td>
</tr>
<tr>
<td>23</td>
<td>327</td>
<td>1234</td>
</tr>
<tr>
<td>24</td>
<td>327</td>
<td>1234</td>
</tr>
</tbody>
</table>

A. primary key on id
B. tag_id
C. article_id
D. foreign keys
Concept Question 3

What’s wrong with this table design?

CREATE TABLE Person
(
 ssn CHAR(10) PRIMARY KEY,
 name VARCHAR(50) NOT NULL,
 phone CHAR(12) NOT NULL,
 city VARCHAR(50) NOT NULL
)

Sample records:

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
<th>phone</th>
<th>city</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-45-6789</td>
<td>Claire Nelson</td>
<td>512-555-1212</td>
<td>Austin</td>
</tr>
<tr>
<td>123-45-6789</td>
<td>Claire Nelson</td>
<td>512-999-1212</td>
<td>Austin</td>
</tr>
<tr>
<td>987-65-4321</td>
<td>Jonathan Hsu</td>
<td>703-222-1234</td>
<td>Houston</td>
</tr>
</tbody>
</table>

A. ssn is not the primary key
B. repeated data
C. moving to another city can require multiple updates
D. all of the above
Concept Question 4

This is a table that is designed for storing the room reservations of hotel guests. Can you figure out what’s wrong with the design?

CREATE TABLE Hotel_Reservation
(
 guest_name VARCHAR(50) NOT NULL,
 room_nbr INTEGER NOT NULL,
 arrival_date DATE NOT NULL,
 departure_date DATE,
 PRIMARY KEY (room_nbr, arrival_date),
 CHECK (departure_date >= arrival_date)
)

A. it doesn’t let you store the contact information for the guest
B. it doesn’t let you store multiple rooms per guest
C. it allows for double-bookings
D. it doesn’t let you check-in and check-out on the same day
E. none of the above
Concept Question 5

How can we improve on the design of the Hotel_Reservation table to guarantee consistency and thus prevent double-bookings?

For example, we want the second insert statement below to fail:

```
INSERT INTO Hotel_Reservation VALUES ('Adele', 1000, '2016-02-22', '2016-02-26');

INSERT INTO Hotel_Reservation VALUES ('Madonna', 1000, '2016-02-25', '2016-02-27');
```

A. Add a check constraint
B. Add a trigger
C. Record each occupied date for a room
D. Either B or C
E. None of the above

Table definition (for reference):

```
CREATE TABLE Hotel_Reservation
(  
guest_name VARCHAR(50) NOT NULL,  
room_nbr INTEGER NOT NULL,  
arrival_date DATE NOT NULL,  
departure_date DATE,  
PRIMARY KEY (room_nbr, arrival_date),  
CHECK (departure_date >= arrival_date)
) 
```
Solutions to Concept Question 5

Solution 1: use a table-level trigger to find the rooms that don’t have an overlapping reservation:

```sql
select room_nbr
from Hotel_Reservation
where room_nbr not in (select room_nbr
                        from Hotel_Reservation
                        where @arrival_date between arrival_date and departure_date - 1)
and room_nbr not in (select room_nbr
                        from Hotel_Reservation
                        where @departure_date between arrival_date and departure_date)
```

Note: variables denoted with @
Solutions to Concept Question 5

Solution 2: redesign the table to record each occupied date per room:

New table definition:

```
CREATE TABLE Hotel_Reservation
(
  guest_name VARCHAR(50) NOT NULL,
  room_nbr INTEGER NOT NULL,
  occupy_date DATE NOT NULL,
  PRIMARY KEY (room_nbr, occupy_date)
)
```

Original table definition (for reference):

```
CREATE TABLE Hotel_Reservation
(
  guest_name VARCHAR(50) NOT NULL,
  room_nbr INTEGER NOT NULL,
  arrival_date DATE NOT NULL,
  departure_date DATE,
  PRIMARY KEY (room_nbr, arrival_date),
  CHECK (departure_date >= arrival_date)
)
Concept Question 6

You have a Customer table with an auto-incrementing primary key. You decide to start using the highest key value to get the total number of customers. (In MySQL this would be done using the built-in function LAST_INSERT_ID(). What can possibly go wrong?

A. Some records are missing a key value
B. There are gaps in the key sequence
C. Some records have the same key value
D. None of the above

CREATE TABLE Customer
(
    id INT AUTO_INCREMENT PRIMARY KEY,
    first_name VARCHAR(50) NOT NULL,
    middle_initial CHAR(1),
    last_name VARCHAR(50) NOT NULL,
    ...
)
Homework for Next Time

- Read chapter 6 from the *Beginning Database Design* book
- Exercises at the end of chapter 6