
Week 4: Database Design

Quiz
Q1: C
Q2: A
Q3: B
Q4: A
Q5: B

Anomalies

● Insert Anomaly​ - an anomaly caused by inserting entries that depend on other
entries which may not exist yet (ex. inserting a new resident living in a certain
state, without having that state in the database yet)

● Update Anomaly​ - an anomaly caused by updating information which may affect
the correctness of other data (ex. A resident’s local address is changed from
Houston to Chicago, but their state of residence remains in Texas)

● Delete Anomaly​ - an anomaly caused by deleting entries that causes removal of
other information (ex. a relation containing a resident’s state may remove an
entire state from the database if the last resident living in a certain state is
dropped)

Normalization Theory
● First Normal Form (1NF)​ - all fields are in scalar form (atomic)

TABLE ​Hotel
 id | name | amenities

----+---------------+-----------

1 | Hilton | WiFi, Cable, Food

○ Ex. ‘Hotels’ is not in first normal form because of the ‘amenities’ field

TABLE ​Hotel
 id | name | amenities

----+---------------+-----------

1 | Hilton | WiFi

2 | Hilton | Cable

3 | Hilton | Food

○ Ex. Now that we’ve decomposed ‘amenities’, it is.
● Second Normal Form (2NF)​ - All fields are functionally dependent on the

primary key
○ Functional Dependency​ - the quality of a set of data such that if a table

agrees that a field A determines another field B, then all corresponding

values in A will result in the same value in B (ex. A city ​should​ functionally
depend on the state, because every table that stores a city should agree
that it is from the same state)

TABLE ​Food
 id | food_name | random_expression

----+-----------+---

1 | Spaghetti | y = Ax + b

2 | Turkey | (x - y)(x + y) = x^2 + y^2

○ Ex. ‘random_expression’​ ​has absolutely nothing to do with the primary key
for ‘Food’

TABLE ​Food
 id | food_name |

----+-----------+

1 | Spaghetti |

2 | Turkey |

TABLE​ Expression
 id | expression

----+----------------

1 | y = Ax + b

2 | (x - y)(x + y) = x^2 + y^2

○ Ex. We’ve separated them into another group of tables now
● Third Normal Form (3NF)​ - There are no fields that are functionally dependent

on other non-key attributes

TABLE ​Student
 id | f_name | mom_name | mom_relationship_status

----+----------+-----------------+------------------------

1 | Jason | Martha Jones | married

2 | Robert | Sarah Palin | its_complicated

3 | Nora | Martha Jones | married

○ Ex. ‘Students’ is not in third normal form because
mom_relationship_status is functionally dependent on mom_name.

TABLE ​Student
 id | f_name | mom_id

----+----------+--------

1 | Jason | 1

2 | Robert | 2

3 | Nora | 1

TABLE​ Mom

 id | mom_name | mom_relationship_status

----+----------------+------------------------

1 | Martha Jones | married

2 | Sarah Palin | its_complicated

○ Ex. Now that we’ve resolved the functional dependency, it is.
More SQL

● CREATE TABLE AS SELECT​ - Creates a table based off of the nested SELECT
query statement, with the returned columns being the only fields in the new table.

CREATE TABLE ​Student ​AS SELECT ​id, name ​FROM ​People ​WHERE
role = ‘student’;

○ Ex.​ Creates a table ‘Student’ that contains all the records from People
where their role is a student, with only their id and their name.

● INSERT INTO ​- Inserts values into a table based on certain values

INSERT INTO ​Student (id, name) ​VALUES​ (36, ‘Jason’);

○ Ex.​ Inserts a new student with id 36, named Jason into the Student table.
○ This function can also handle nested queries by typing ​INSERT INTO

Table (field1, field2, …) ​SELECT​ …
● DELETE​ - Deletes fields from a table via a query.

DELETE FROM ​Student ​WHERE ​name = ‘Jason’

○ Ex.​ Removes all students with the name ‘Jason’ from the table Student
● ALTER TABLE DROP/ADD COLUMN​ - Removes all of a certain field from a

table, or adds a number of columns to a table.

ALTER TABLE​ Student ​DROP COLUMN ​mom_id;

○ Ex.​ Removes the column mom_id and all of the data of each record from
the table Student.

● UPDATE​ - Updates a table. Pretty broad, but here’s a specific use case:

UPDATE ​Student ​SET ​last_name = mom_last_name;

○ Ex.​ Sets all the students’ last names to their mother’s.

