Week 4: Database Design

Quiz
Q1:C
Q2: A
Q3:B
Q4: A
Q5: B

Anomalies

e Insert Anomaly - an anomaly caused by inserting entries that depend on other
entries which may not exist yet (ex. inserting a new resident living in a certain
state, without having that state in the database yet)

e Update Anomaly - an anomaly caused by updating information which may affect
the correctness of other data (ex. A resident’s local address is changed from
Houston to Chicago, but their state of residence remains in Texas)

e Delete Anomaly - an anomaly caused by deleting entries that causes removal of
other information (ex. a relation containing a resident’s state may remove an
entire state from the database if the last resident living in a certain state is
dropped)

Normalization Theory
e First Normal Form (1NF) - all fields are in scalar form (atomic)

TABLE Hotel
id | name | amenities
____+ _______________ + ___________
1 | Hilton | WiFi, Cable, Food

o Ex. ‘Hotels’ is not in first normal form because of the ‘amenities’ field

TABLE Hotel

id | name | amenities
_____I_ _______________ _|_ ___________
1 | Hilton | WiFi
2 | Hilton | Cable
3 | Hilton | Food

o Ex. Now that we've decomposed ‘amenities’, it is.
e Second Normal Form (2NF) - All fields are functionally dependent on the
primary key
o Functional Dependency - the quality of a set of data such that if a table
agrees that a field A determines another field B, then all corresponding

values in A will result in the same value in B (ex. A city should functionally
depend on the state, because every table that stores a city should agree
that it is from the same state)

TABLE Food
id | food name

Spaghetti

Turkey X - y)(x +vy) = x"2 + y°2

o Ex. ‘random_expression’ has absolutely nothing to do with the primary key
for ‘Food’

TABLE Food
id | food name |
e R +
| Spaghetti |
2 | Turkey

TABLE Expression

id | expression

_____I_ ________________

1 | v = Ax + b

2 | (x - y)(x +y) =x"2 + y"2

o Ex. We've separated them into another group of tables now
e Third Normal Form (3NF) - There are no fields that are functionally dependent
on other non-key attributes

TABLE Student

id | £ name | mom name | mom relationship status
e o o
1 | Jason | Martha Jones | married
2 | Robert | Sarah Palin | its complicated
3 | Nora | Martha Jones | married

o Ex. ‘Students’ is not in third normal form because
mom_relationship_status is functionally dependent on mom_name.

TABLE Student

id | £ name | mom id
_____I_ __________ _I_ ________
1 | Jason | 1
2 | Robert | 2
3 | Nora | 1

id | mom name | mom relationship status
_____I_ ________________ _I_ ________________________
1 | Martha Jones | married
2 | Sarah Palin | its complicated

o Ex. Now that we've resolved the functional dependency, it is.

More SQL
e CREATE TABLE AS SELECT - Creates a table based off of the nested SELECT

query statement, with the returned columns being the only fields in the new table.

CREATE TABLE Student AS SELECT id, name FROM People WHERE
role = ‘student’;

o Ex. Creates a table ‘Student’ that contains all the records from People
where their role is a student, with only their id and their name.
e INSERT INTO - Inserts values into a table based on certain values
INSERT INTO Student (id, name) VALUES (36, ‘Jason’);

o Ex. Inserts a new student with id 36, named Jason into the Student table.
o This function can also handle nested queries by typing INSERT INTO
Table (field1, field2, ...) SELECT ...
e DELETE - Deletes fields from a table via a query.
DELETE FROM Student WHERE name = ‘Jason’

o Ex. Removes all students with the name ‘Jason’ from the table Student
e ALTER TABLE DROP/ADD COLUMN - Removes all of a certain field from a
table, or adds a number of columns to a table.

ALTER TABLE Student DROP COLUMN mom id;

o Ex. Removes the column mom_id and all of the data of each record from
the table Student.
e UPDATE - Updates a table. Pretty broad, but here’s a specific use case:

UPDATE Student SET last name = mom last name;

o Ex. Sets all the students’ last names to their mother’s.

