
Week 6: Query Optimization

Quiz
Q1: A
Q2: D
Q3: B
Q4: B
Q5: C

Database System Structure

● Data is stored as blocks (regions of data, usually 4K or 8K) in pages (for the
intents and purposes of this class, just bigger regions of data for lookup) on disk.

● Data is accessed in a database by SQL Commands, which are in turn parsed by
the database system

● Database Index - metadata in the database that keeps an ordered list of specific
data in a table to optimize queries

○ Query optimizer works behind the scenes to decide which index to use
given a query to optimize the time for fetching data.

○ Ex. a primary key is one example of what a database may index
○ Aggregate columns cannot be indexed
○ Columns of multiple tables also cannot be indexed together

● B-Tree - a type of self-balancing tree (a tree that keeps its children balanced at
each level) that keeps track of ordering at each level, allowing for fast lookup

○ Leaf nodes (nodes with no children) are connected by a doubly linked
list

○ Indexing in a B-Tree works like so:
■ Start at the root (the top node that does not have a parent)
■ With your search key, or the value you are searching for, look at

the current node’s key. For your search key s and the current
node’s key k,

● If s < k, go down the left child
● If s >= k, go down the right child

■ Continue until you reach the leaves, which should contain your
data. If it doesn’t, then your search query returned no results.

Query Analysis in Postgres
● EXPLAIN ANALYZE - used to see the statistics of a certain query; that is, the

steps the database went through to perform the query, and how long it took.

EXPLAIN ANALYZE SELECT menu_item FROM Kerbey_Lane WHERE

cost = ‘cheap’

○ Ex. this query will show me how the database pulled cheap menu items
from Kerbey Lane, and how long it took. Because of the nature of Kerbey
Lane, the SELECT query will probably not return anything.

● CREATE INDEX - used to create user-defined indexes on columns

CREATE INDEX index_name ON table_name(column_name);

○ Indexes like these will speed up performance on queries that reference
the column by precalculating certain values (i.e sorting them)

