
Query Optimization

CS 327E
Feb 26, 2018

Announcements

• Midterm next class in PAI 2.48 instead of our regular classroom.

• Review session Thursday at 5pm in WAG 420.

• After Spring Break: guest lecture, BigQuery.

1) What is the key benefit of having index structures in a database?

A) They speed up read queries
B) They compress column data
C) They improve write throughput
D) They make the database resilient to crashes

2) Which of the following are tradeoffs associated with indexes?

A) Slower updates.
B) Slower inserts.
C) Slower deletes.
D) All of the above.

3) What is the SQL command for creating an index?

A) CREATE INDEX table_name (column_name);

B) CREATE INDEX index_name ON table_name

(column_name);

C) CREATE B-TREE index_name ON column_name;

D) None of the above

4) A B-tree can index only a single column of a table.

A) True
B) False

5) Which column(s) of a table does the database engine automatically
index?

A) Integer columns
B) Varchar columns
C) Primary key columns
D) All of the above

Employee tableSimplest Database System

Employee tableSimplest Database System Realistic Database System

Source: Ramakrishnan and Gehrke, DBMS Systems, 3rd edition, 2003.

• Critical to database systems

• At least one index per table

• DBA analyzes workload and
chooses which indexes to create
(no easy answers)

• Creating indexes can be an
expensive operation

• They work “behind the scenes”

• Query optimizer decides which
indexes to use during query
execution

•

Employee tableDatabase Indexes

root node

branch nodes

leaf nodes

Properties of B Trees

• height is balanced

• have several children

• data stored in the leaf nodes

• leaf nodes are ordered

• leaf nodes are connected (doubly linked list)

• each node stores several index entries

• index entry = (key value, pointer)

• search speed ≈ height of tree

Structure of a B Tree

Format of a Node

Employee table
Search Algorithm

• Let S = Search Key

• Let K = Key Value

• An Index Entry = (K, P)

• Begin at root:
• If S < K, follow K’s left pointer
• If S = K, follow K’s right pointer
• If S > K and K is not in last entry, scan forward to next entry
• Repeat for each entry until last entry is reached:

• If S < K, follow K’s left pointer
• If S ≥ K, follow K’s right pointer

• Repeat until leaf node is reached

• Scan forward leaf node until K = S

• Follow K’s pointer to row id in data file

root

branch

leaf

RHS of a B Tree

select *

from T1

where c1 = x;

select *

from T1

where c1 > x and c1 < y;

Equality Query:

Range Query:

Choosing B Trees

Common use cases:
• Columns in WHERE clause
• Columns in JOINs

Other use cases:
• Columns in GROUP BY and ORDER BY clause
• Columns in SELECT clause

• Not low-cardinality columns (e.g. boolean columns)
• Not aggregated columns
• Not columns from multiple tables

Demo: Optimizing Queries on TICKIT Database

TICKIT ERD: see snippets repo for dataset and code.

https://github.com/cs327e-spring2018/snippets/tree/master/tickit

Practice Problem 1: Construct an index on the appropriate
column(s) of the Sales table to optimize this query:
select s.sellerid, u.username, u.email, sum(qtysold)

from Sales s join Users u on s.sellerid = u.userid

group by s.sellerid, u.username, u.email

order by sum(qtysold) desc;

Practice Problem 1: Construct an index on the appropriate
column(s) of the Sales table to optimize this query:
select s.sellerid, u.username, u.email, sum(qtysold)

from Sales s join Users u on s.sellerid = u.userid

group by s.sellerid, u.username, u.email

order by sum(qtysold) desc;

Which columns are contained in the index?
A)sellerid

B)qtysold

C)sellerid,qtysold
D) None of the above

Practice Problem 2: Construct an index on the appropriate
column(s) of the Users table to optimize this query:
select s.sellerid, u.username, u.email, sum(qtysold)

from Sales s join Users u on s.sellerid = u.userid

where u.city = 'Houston'

group by s.sellerid, u.username, u.email

order by sum(qtysold) desc;

Practice Problem 2: Construct an index on the appropriate
column(s) of the Users table to optimize this query:
select s.sellerid, u.username, u.email, sum(qtysold)

from Sales s join Users u on s.sellerid = u.userid

where u.city = 'Houston'

group by s.sellerid, u.username, u.email

order by sum(qtysold) desc;

Which columns are contained in the index?
A)city

B)userid, username, email

C)All of the above

D)None of the above

