Final Project: Milestone 4

CS 327E
April 16, 2018

Announcements:

Today: Last regular class.
Today: Last quiz.

Next Friday: Demo Day in WAG 420. Schedule link.
Discuss: Milestones 5 and 6 guidelines.

https://tinyurl.com/yd68gutt

1) What makes traditional MapReduce suitable for batch
processing?

A) The inputs to the Mapper are bounded / finite.
B) The inputs to the Reducer are bounded / finite.
C) The job is run at fixed time slices (e.g. now, hourly, daily, etc.)

D) All of the above.

2) What is the one crucial difference between a batch job and a
streaming job?

A) The batch job processes larger collections of data.
B) The batch job goes through a multi-stage pipeline.
C) The event stream never ends.

D) None of the above.

3) Consider the Star Wars movies and their release timeline.

The episode number is equivalent to
release year is equivalent to

Episoc
Episoc
Episoc
Episoc
Episoc

Episoc

elV: 1977

eV: 1980

e VI: 1983

S
S
e

: 1999
|: 2002
[1: 2005

whereas the

A) Processing time; Event time
B) Event time; Processing time

4) The paper discusses 3 types of windows: Fixed, Sliding, and
Sessions. Which notion of time are these windows based on?

A) Event time
B) Processing time

C) Neither

5) The paper discusses 3 options for handling straggler events
that arrive after the window has been declared complete:
Discarding, Accumulating, and Accumulating & Retracting.
Which option(s) require the consumer to handle updated
results for the windows?

A) Discarding

B) Accumulating

C) Accumulating & Retracting
D) All of the above

E) Only Band C

Case Expressions in SQL

Conditional logic

Since SQL:92 Standard

Appear in SELECT clause

Return scalar value for each record
Return values of same type

Jsed in SELECT statements

Also used in UPDATE, INSERT,
DELETE statements

General Form:

CASE
WHEN cl1 THEN el
WHEN c2 THEN eZ

WHEN cn THEN en
[ELSE ed]
END

Case Expression Example

v select listing id,

amenity name
amenity name
amenity name
amenity name
amenity name
amenity name

Query Editor

‘translation missing: en.hosting amenity 49' then 'Unknown'
"“translation missing: en.hosting_amenity_5@° then "Unknown’
is null then 'Unknown

"' then 'Unknown'

el [||

from "utcs-spr2018.austin.Amenity”

New Query
1
2 case
3 when
4 when
5 when
6 when
7 else
8 end as
9

1@ order by
11

listing id;

Standard SQL Dialect -~

RUN QUERY '

Results

Row

—%

[R R 7 B N

Table

Details

Save Query

listing_id amenity_name

14913 TV

14913 Indoor fireplace
14913 Unknown
14913 Kitchen

14913 Heating

JSON

Ctrl + Enter: run query, Tab or Ctrl + ¢

Save View Format Query Show Options Query complete (1.9s elapsed, 3.10 MB processed)

Download as CSV Download as JSON Save as Table Sav

irst < Prev Rows 1 -5 of 143204 Next> Last

Another Case Expression Example

New Query

v

DWW WRN

-

select
case

when
when
when
when
end as
from °

id, name, host_id, host_name, number_of reviews,

number_of reviews > 1000 then 'Many'
number of reviews > 500 then Moderate
number of reviews >= 1 then 'Few'
number “of reviews = @ then 'None'
reviews Iabel
utcs-spr2018.austin.Summary_Listing’

where host_name is not null;

Standard SCIL Dialect X

RUN QUERY ' Save Query Save View Format Query Show Options

Query Editor

Ctrl + Enter: run query, Tab or Cirl + !

Query complete (1.7s elapsed, 859 KB processed)

Download as JSON Save as Table Save 1

host_name number_of reviews

A

m @ > >

1

o o

Results Details Download as CSV
Row id name host_id
1 5447711 Close to Downtown Master Bedroom - SXSW 27275235
2 5269388 Awesome Close to Downtown Space - SXSW 27275235
3 5444836 Cozy Close to Downtown Single Room - SXSW 27275235
= 17587604 Gorgeous Apartment--Available Now! 3702973
5 14587844 South Congress Home w/ Pool/Hot Tub - walk to SXSW 3762351
Table JSON First < Prev Rows 1-50f 13216 Next > Last

reviews_label
Few

Few

Few

None

None

Window Clause in SQL

* Informally called the OVER clause

+ Since SQL:2003 Standard General Form:

* Rows split into partitions with SELECT c1,
PARTITION BY predicate £ ()

* Rows are sorted within each partition OVER (
with ORDER BY predicate [PARTITION BY c3

* Window function applied to each row ORDER BY c4]
within partition)

* Example functions: ROW NUMBER (), FROM T1

RANK ()

Window Example: ROW_NUMBER

1~ SELECT

2 ROW_NUMBER() OVER() AS row_num,

3 neighborhood name,

4 zipcode

5+ FROM

6 "utcs-spr2e18.austin.Neighborhood"
7+ WHERE

8 zipcode IS NOT NULL;

Standard SQL Dialect

RUN QUERY ' Save Query Save View Format Qu

Results Details

Row row_num neighborhood_name zipcode

1 1 South Congress 78701
2 2 Bouldin Creek 78701
3 3 West Campus 78701
4 4 Old West Austin 78701
5 5 Downtown 78701
6 6 Rainey Street 78701

Window Example: ROW_NUMBER

1~ SELECT 1~ SELECT

2 ROW_NUMBER() OVER() AS row_num, 2 ROW_NUMBER() OVER(ORDER BY neighborhood name) AS row_num,
3 neighborhood_name, 3 neighborhood name,

4 zipcode 4 zipcode

5+ FROM 5+ FROM

6 "utcs-spr2e18.austin.Neighborhood" 6 "utcs-spr2e18.austin.Neighborhood"

7+ WHERE 7 v ORDER BY

8 zipcode IS NOT NULL; 8 neighborhood name;

Standard SQL Dialect = Standard SQL Dialect

RUN QUERY ' Save Query Save View Format Qu RUN QUERY ' Save Query Save View Format Query Show Options Query cor

Results Details Results Details Download as
Row row_num neighborhood_name zipcode Row row_num neighborhood_name zipcode

1 1 South Congress 78701 1 1 Allendale 78731

2 2 Bouldin Creek 78701 2 2 Allendale 78756

3 3 West Campus 78701 3 3 Allendale 78757

4 4 Old West Austin 78701 4 4 Anderson Mill 78729

5 5 Downtown 78701 5 5 Anderson Mill 78750

6 6 Rainey Street 78701 6 6 Angus Valley 78727

Window Example: ROW_NUMBER

1~ SELECT

2 ROW_NUMBER() OVER(PARTITION BY neighborhood name) AS row_num,
3 neighborhood name,
4 zipcode
5+ FROM

6 "utcs-spr2e18.austin.Neighborhood” ;

Standard SQL Dialect >

RUN QUERY . Save Query Save View Format Query Show Options Query complete

Results Details Download as CSV

Row row_num neighborhood_name zipcode

1 1 Allendale 78731
2 2 Allendale 78756
3 3 Allendale 78757
4 1 Anderson Mill 78729
5 2 Anderson Mill 78750
6 1 Angus Valley 78727

Window Example: ROW_NUMBER

1+ SELECT

2 ROW_NUMBER() OVER(PARTITION BY neighborhood name ORDER BY zipcode) AS row_num,
3 neighborhood name,
4 zipcode
5+ FROM

6 "utcs-spr2018.austin.Neighborhood ;

Ctrl + Ei

Standard SCQIL Dialect >

' Save Query Save View Format Query Show Options Query complete (1.9s elapsed, 3.45 KB proce:

Results Details Download as CSV Download as JSON

Row row_num neighborhood_name zipcode

19 1 Brentwood 78751
20 2 Brentwood 78752
21 3 Brentwood 78756
22 4 Brentwood 78757
23 1 Bryker Woods 78703

24 2 Bryker Woods 78705

Window Example: RANK

1v
2
3
4
5
6v
-

SELECT

id, host id,

price,

RANK() OVER(PARTITION BY host id ORDER BY price) AS ranked listing

FROM

"utcs-spr2e18.austin.Listing’

ORDER BY

host_id, price;

Standard SQL Dialect ~

Save View

price ranked_listing

' Save Query
Results Details

Row id host_id

43 1737150 16920 75.0
44 9079111 16920 100.0
45 5684947 16920 125.0
46 5444799 16920 150.0
47 10385008 16920 400.0
48 13386694 17333 60.0
Table JSON

1
2
3
4
5

1

Format Query

irst < Prev

Show Options Query complete (0.6s elapsed,

Download as CSV Download

Rows 43 - 48 of 13367 Next > Last

Window Example: RANK and SUM

1~ SELECT

2 id, host id, price,

3 RANK() OVER(PARTITION BY host id ORDER BY price) AS ranked_listing,

4 SUM(price) OVER(PARTITION BY host id ORDER BY price) AS running total
5+ FROM
6 "utcs-spr2el18.austin.Listing’
/ v ORDER BY
8 host_id, price;

Standard SQL Dialect =

RUN QUERY H Save Query Save View Format Query Show Options Query complete (1.8s elapsed, 37

Results Details Download as CSV Download a
Row id host_id price ranked_listing running_total

43 1737150 16920 75.0 1 75.0

44 9079111 16920 100.0 2 175.0

45 5684947 16920 125.0 3 300.0

46 5444799 16920 150.0 4 450.0

47 10385008 16920 400.0 5 850.0

48 13386694 17333 60.0 1 60.0

Table JSON irst < Prev Rows 43 - 48 of 13367 Next > Last

Final Project Milestone 4

Cross-Dataset Joins:
http://www.cs.utexas.edu/~scohen/project/fp guidelines.pdf

http://www.cs.utexas.edu/~scohen/project/fp_guidelines.pdf

