Final Project: Milestone 4

CS 327E
April 16, 2018



Announcements:

Today: Last regular class.
Today: Last quiz.

Next Friday: Demo Day in WAG 420. Schedule link.
Discuss: Milestones 5 and 6 guidelines.


https://tinyurl.com/yd68gutt

1) What makes traditional MapReduce suitable for batch
processing?

A) The inputs to the Mapper are bounded / finite.
B) The inputs to the Reducer are bounded / finite.
C) The job is run at fixed time slices (e.g. now, hourly, daily, etc.)

D) All of the above.



2) What is the one crucial difference between a batch job and a
streaming job?

A) The batch job processes larger collections of data.
B) The batch job goes through a multi-stage pipeline.
C) The event stream never ends.

D) None of the above.



3) Consider the Star Wars movies and their release timeline.

The episode number is equivalent to
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A) Processing time; Event time
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4) The paper discusses 3 types of windows: Fixed, Sliding, and
Sessions. Which notion of time are these windows based on?

A) Event time
B) Processing time

C) Neither



5) The paper discusses 3 options for handling straggler events
that arrive after the window has been declared complete:
Discarding, Accumulating, and Accumulating & Retracting.
Which option(s) require the consumer to handle updated
results for the windows?

A) Discarding

B) Accumulating

C) Accumulating & Retracting
D) All of the above

E) Only Band C



Case Expressions in SQL

Conditional logic

Since SQL:92 Standard

Appear in SELECT clause

Return scalar value for each record
Return values of same type

Jsed in SELECT statements

Also used in UPDATE, INSERT,
DELETE statements

General Form:

CASE
WHEN cl1 THEN el
WHEN c2 THEN eZ

WHEN cn THEN en
[ELSE ed]
END




Case Expression Example

v select listing id,

amenity name
amenity name
amenity name
amenity name
amenity name
amenity name

Query Editor

‘translation missing: en.hosting amenity 49' then 'Unknown'
"“translation missing: en.hosting_amenity_5@° then "Unknown’
is null then 'Unknown

"' then 'Unknown'

el [ ||

from "utcs-spr2018.austin.Amenity”

New Query
1
2 case
3 when
4 when
5 when
6 when
7 else
8 end as
9

1@ order by
11

listing id;

Standard SQL Dialect -~

RUN QUERY '

Results

Row

—%

[ R R 7 B N

Table

Details

Save Query

listing_id amenity_name

14913 TV

14913 Indoor fireplace
14913 Unknown
14913 Kitchen

14913 Heating

JSON

Ctrl + Enter: run query, Tab or Ctrl + ¢

Save View Format Query Show Options Query complete (1.9s elapsed, 3.10 MB processed)

Download as CSV Download as JSON Save as Table Sav

irst < Prev Rows 1 -5 of 143204 Next> Last




Another Case Expression Example

New Query

v

DWW WRN

-

select
case

when
when
when
when
end as
from °

id, name, host_id, host_name, number_of reviews,

number_of reviews > 1000 then 'Many'
number of reviews > 500 then Moderate
number of reviews >= 1 then 'Few'
number “of reviews = @ then 'None'
reviews Iabel
utcs-spr2018.austin.Summary_Listing’

where host_name is not null;

Standard SCIL Dialect X

RUN QUERY ' Save Query Save View Format Query Show Options

Query Editor

Ctrl + Enter: run query, Tab or Cirl + !

Query complete (1.7s elapsed, 859 KB processed)

Download as JSON Save as Table Save 1

host_name number_of reviews

A

m @ > >

1

o o

Results Details Download as CSV
Row id name host_id
1 5447711 Close to Downtown Master Bedroom - SXSW 27275235
2 5269388 Awesome Close to Downtown Space - SXSW 27275235
3 5444836 Cozy Close to Downtown Single Room - SXSW 27275235
= 17587604 Gorgeous Apartment--Available Now! 3702973
5 14587844 South Congress Home w/ Pool/Hot Tub - walk to SXSW 3762351
Table JSON First < Prev Rows 1-50f 13216 Next > Last

reviews_label
Few

Few

Few

None

None



Window Clause in SQL

* Informally called the OVER clause

+ Since SQL:2003 Standard General Form:

* Rows split into partitions with SELECT c1,
PARTITION BY predicate £ ()

* Rows are sorted within each partition OVER (
with ORDER BY predicate [PARTITION BY c3

* Window function applied to each row ORDER BY c4]
within partition )

* Example functions: ROW NUMBER (), FROM T1

RANK ()



Window Example: ROW_NUMBER

1~ SELECT

2 ROW_NUMBER() OVER() AS row_num,

3 neighborhood name,

4 zipcode

5+ FROM

6 "utcs-spr2e18.austin.Neighborhood"
7+ WHERE

8 zipcode IS NOT NULL;

Standard SQL Dialect

RUN QUERY ' Save Query Save View Format Qu

Results Details

Row row_num neighborhood_name zipcode

1 1 South Congress 78701
2 2 Bouldin Creek 78701
3 3 West Campus 78701
4 4  Old West Austin 78701
5 5 Downtown 78701
6 6 Rainey Street 78701



Window Example: ROW_NUMBER

1~ SELECT 1~ SELECT

2 ROW_NUMBER() OVER() AS row_num, 2 ROW_NUMBER() OVER(ORDER BY neighborhood name) AS row_num,
3 neighborhood_name, 3 neighborhood name,

4 zipcode 4 zipcode

5+ FROM 5+ FROM

6 "utcs-spr2e18.austin.Neighborhood" 6 "utcs-spr2e18.austin.Neighborhood"

7+ WHERE 7 v ORDER BY

8 zipcode IS NOT NULL; 8 neighborhood name;

Standard SQL Dialect = Standard SQL Dialect

RUN QUERY ' Save Query Save View Format Qu RUN QUERY ' Save Query Save View Format Query Show Options Query cor

Results Details Results Details Download as
Row row_num neighborhood_name zipcode Row row_num neighborhood_name zipcode

1 1  South Congress 78701 1 1 Allendale 78731

2 2 Bouldin Creek 78701 2 2 Allendale 78756

3 3 West Campus 78701 3 3 Allendale 78757

4 4  Old West Austin 78701 4 4 Anderson Mill 78729

5 5 Downtown 78701 5 5 Anderson Mill 78750

6 6 Rainey Street 78701 6 6 Angus Valley 78727



Window Example: ROW_NUMBER

1~ SELECT

2 ROW_NUMBER() OVER(PARTITION BY neighborhood name) AS row_num,
3 neighborhood name,
4 zipcode
5+ FROM

6 "utcs-spr2e18.austin.Neighborhood” ;

Standard SQL Dialect >

RUN QUERY . Save Query Save View Format Query Show Options Query complete

Results Details Download as CSV

Row row_num neighborhood_name zipcode

1 1 Allendale 78731
2 2 Allendale 78756
3 3 Allendale 78757
4 1 Anderson Mill 78729
5 2 Anderson Mill 78750
6 1 Angus Valley 78727



Window Example: ROW_NUMBER

1+ SELECT

2 ROW_NUMBER() OVER(PARTITION BY neighborhood name ORDER BY zipcode) AS row_num,
3 neighborhood name,
4 zipcode
5+ FROM

6 "utcs-spr2018.austin.Neighborhood  ;

Ctrl + Ei

Standard SCQIL Dialect >

' Save Query Save View Format Query Show Options Query complete (1.9s elapsed, 3.45 KB proce:

Results Details Download as CSV Download as JSON

Row row_num neighborhood_name zipcode

19 1 Brentwood 78751
20 2 Brentwood 78752
21 3 Brentwood 78756
22 4 Brentwood 78757
23 1 Bryker Woods 78703

24 2 Bryker Woods 78705



Window Example: RANK

1v
2
3
4
5
6v
-

SELECT

id, host id,

price,

RANK() OVER(PARTITION BY host id ORDER BY price) AS ranked listing

FROM

"utcs-spr2e18.austin.Listing’

ORDER BY

host_id, price;

Standard SQL Dialect ~

Save View

price ranked_listing

' Save Query
Results Details

Row id host_id

43 1737150 16920 75.0
44 9079111 16920 100.0
45 5684947 16920 125.0
46 5444799 16920 150.0
47 10385008 16920 400.0
48 13386694 17333 60.0
Table JSON

1
2
3
4
5

1

Format Query

irst < Prev

Show Options Query complete (0.6s elapsed,

Download as CSV Download

Rows 43 - 48 of 13367 Next > Last



Window Example: RANK and SUM

1~ SELECT

2 id, host id, price,

3 RANK() OVER(PARTITION BY host id ORDER BY price) AS ranked_listing,

4 SUM(price) OVER(PARTITION BY host id ORDER BY price) AS running total
5+ FROM
6 "utcs-spr2el18.austin.Listing’
/ v ORDER BY
8 host_id, price;

Standard SQL Dialect =

RUN QUERY H Save Query Save View Format Query Show Options Query complete (1.8s elapsed, 37

Results Details Download as CSV Download a
Row id host_id price ranked_listing running_total

43 1737150 16920 75.0 1 75.0

44 9079111 16920 100.0 2 175.0

45 5684947 16920 125.0 3 300.0

46 5444799 16920 150.0 4 450.0

47 10385008 16920 400.0 5 850.0

48 13386694 17333 60.0 1 60.0

Table JSON irst < Prev Rows 43 - 48 of 13367 Next > Last




Final Project Milestone 4

Cross-Dataset Joins:
http://www.cs.utexas.edu/~scohen/project/fp guidelines.pdf



http://www.cs.utexas.edu/~scohen/project/fp_guidelines.pdf

