Class of 2/18/2019

Terminology

• <u>entity</u> - an object or a thing (person, team, product, etc.)

Design Principles

- a table models a single entity, and an entity is modeled by a single table
- each field in a table is assigned a primitive data type (i.e a string, a number, a date, etc. No arrays or structs)
- Each field in a table is assigned a precise data type.
 - A field of type
- Every table contains a single Primary Key
 - NOTE: The primary key does not *necessarily* have to be restricted to a single field! It can be a combination of multiple fields, but it has to be *minimal*.
- Each child table contains a Foreign Key.
- Each m:n relationship is modeled with a junction table.

Data Anomalies

- <u>anomaly</u> a flaw in the database that is caused by bad database design
 - <u>insert anomaly</u> not being able to insert an entity into a table without inserting another entity.

	Ex: For a	Student table in	nac	latabase	containing	only this table,	
--	-----------	------------------	-----	----------	------------	------------------	--

id (PK)	fname	Iname	class_id	class_name
1	John	Appleseed	2	Intro to Economics
2	Greg	Dappleseed	1	Intro to Humanities
3	Megan	000	2	Intro to Economics

Note we cannot add a new class without first adding a student.

- <u>update anomaly</u> the same attributes are stored redundantly in another table
 - *Ex.* For the above table, note we cannot update the class name of any class without updating all classes with the same ID in the table
- <u>delete anomaly</u> entity types are lost due to the deletion of other entity types
 - *Ex.* For the above table, note that we cannot remove classes without removing all students associated with that class

Normalization

- <u>normalization</u> forms of a database that represent its organization
 - Only need to know up to **3NF**!
- <u>First Normal Form (1NF)</u> a database is in 1NF when all tables in the database contain fields with only scalar values
 - No one cell in a field should contain multiple values, i.e this Empolyee table is *not* in 1NF:

id (PK)	name	managers
1	Jeff	
2	Bob	1
3	Rank	1, 2

Which field makes this table not in 1NF? *Hint: managers*

- <u>Second Normal Form (2NF)</u> 1NF + all non-key attributes (non Primary Key attributes) must be functionally determined by the **entire** primary key.
 - This table is *not* in 2NF:

state (PK)	city (PK)	population	governor
Texas	Houston	2,313,000	Greg Abbott
Arkansas	Little Rock	198,606	Asa Hutchinson
Texas	Austin	950,715	Greg Abbott

Which field makes this table not in 2NF? *Hint: governor only depends on part of the primary key*

- <u>Third Normal Form (3NF)</u> 2NF + all non-key attributes must be functionally determined by *only* the primary key
 - From the Student table above, note that class name does not depend on the primary key of the table.
- For Y > X, if a table is not in X normal form, then the table is not in Y normal form either.