
CS 327E Class 6
March 4, 2019



1) A Beam transform such as Pardo modifies the input collection 
while processing its elements.

A. True
B. False



2)  What kind of object does the ParDo transform expect?

A. A DoFn subclass
B. A DoFn super class
C. A DoFn abstract class



3)  Does ParDo support random access to PCollections? For 
example, is the highlighted code allowed?

A. Yes
B. No

class ComputeWordLengthFn(beam.DoFn):

  def process(self, element):

    another_element = words[3]

    if len(element) > len(another_element):

       return [len(element)]

word_lengths = words | beam.ParDo(ComputeWordLengthFn())



4) Which Beam transform is equivalent to a SQL WHERE clause?

A. ParDo
B. GroupByKey 
C. CoGroupByKey
D. Flatten



5) Which Beam transform is equivalent to a SQL JOIN?

A. ParDo
B. GroupByKey 
C. CoGroupByKey
D. Flatten



ParDo Transform

●
●

PCollection
● DoFn with a 

process(self, element)
●
● PCollection
●



GroupByKey Transform

● Takes a PCollection as input where each element is a (key, value) pair
● Groups the values by unique key
● Produces a PCollection as output where each element is a (key, 

list(value)) pair
● Related, but not analogous to GROUP BY in SQL



Demo: Student_single.py
git clone https://github.com/cs327e-spring2019/snippets.git



Hands-on Exercise 1
Student_single.py



iClicker Question 1



Demo: 
git clone https://github.com/cs327e-spring2019/snippets.git

Student_cluster.py



Hands-on Exercise 2
Teacher_cluster.py Teacher_single.py

Teacher_cluster.py



iClicker Question 2



ParDo

● DoFn
● process(self, element, 

side_input1, side_input2 ...)
● PCollections
● DoFn
● DoFn



Demo: 
git clone https://github.com/cs327e-spring2019/snippets.git

Takes_single.py



Flatten Transform

● Takes a list of PCollections as input
● Produces a single PCollection as output
● Results contain all the elements from the input PCollections
● Note: Input PCollections must have matching schemas

a_pcoll = p | 'Read File 1' >> ReadFromText('oscars_data_archive.tsv')

b_pcoll = p | 'Read File 2' >> ReadFromText('oscars_data_2019.tsv')

# Union the two PCollections

c_pcoll = (a_pcoll, b_pcoll) | 'Merge PCollections' >> beam.Flatten()



CoGroupByKey Transform

● Takes two or more PCollections as input
● Every element in the input is a (key, value) pair
● Groups values from all input PCollections by common key
● Produces a PCollection as output where each element is a (key, value) 

pair
● Output value is a list of dictionaries containing all data associated with unique 

key
● Analogous to the FULL OUTER JOIN in SQL



CoGroupByKey Transform

q1 = 'SELECT sid, cno, grade FROM college_split.Takes'

q2 = 'SELECT cno, cname FROM college_split.Class'

takes_pcoll = p | 'Run Q1' >> beam.io.Read(beam.io.BigQuerySource( query=q1))

class_pcoll = p | 'Run Q2' >> beam.io.Read(beam.io.BigQuerySource( query=q2))

takes_tuple = takes_pcoll | 'Takes Tuple' >> beam.ParDo(MakeTuple())

class_tuple = class_pcoll | 'Class Tuple' >> beam.ParDo(MakeTuple())

joined_pcoll = (takes_tuple, class_tuple) | 'Join' >> beam.CoGroupByKey()



http://www.cs.utexas.edu/~scohen/milestones/Milestone6.pdf
https://tinyurl.com/y7d2jzjj

