
Beam/Dataflow setup:

https://github.com/cs327e-spring2020/snippets/wiki/Beam--%26-

Dataflow-Setup  

python -m apache_beam.examples.wordcount \
--project $PROJECT_ID \
--runner DataflowRunner \
--staging_location gs://$BUCKET/staging \
--temp_location gs://$BUCKET/temp \
--output gs://$BUCKET/output
 
*Replace $PROJECT_ID and $BUCKET with your project id and bucket

name.

*Don’t include the dollar sign.

Dataflow

allows processing batch data and streaming data using the same

code, which is unique feature of the Dataflow. 

Apache Beam

Pipeline:

- DAG, nodes = Transforms, edges = PCollections

- Executed as a single unit.

- A Pipeline encapsulates your entire data processing task, from

start to finish. This includes reading input data, transforming

that data, and writing output data. All Beam driver programs

must create a Pipeline. When you create the Pipeline, you must

also specify the execution options that tell the Pipeline where

and how to run.

PCollection:

https://github.com/cs327e-spring2020/snippets/wiki/Beam--%26-Dataflow-Setup
https://github.com/cs327e-spring2020/snippets/wiki/Beam--%26-Dataflow-Setup
gs://$BUCKET/output

- A collection of bounded or unbounded elements

- Immutable

- Everytime we run a transform, we create a new PCollection.

- Our pipeline typically creates an initial PCollection by reading data

from an external data source, but you can also create

a PCollection from in-memory data within your driver program. From

there, PCollections are the inputs and outputs for each step in your

pipeline.

* Bounded Data: Bound data is finite and unchanging data, where
everything is known about the set of data.

* Unbounded Data: Unbound data is unpredictable, infinite, and not
always sequential.

Transform:

- Data processing operations

- Serializable: Converted to byte stream to transfer over the

network

- Parallelizable: Many instances will be running it as subsets

of the data  
will be using it

- Idempotent: safe to apply multiple times leading to similar

results.

- [Output PCollection] = [Input PCollection] | [Transform]

Pardo

- ParDo is a Beam transform for generic parallel processing.

Helpful link to understand Apache Beam python syntax

https://stackoverflow.com/questions/43796046/explain-apache-
beam-python-syntax

https://stackoverflow.com/questions/43796046/explain-apache-beam-python-syntax
https://stackoverflow.com/questions/43796046/explain-apache-beam-python-syntax
https://stackoverflow.com/questions/43796046/explain-apache-beam-python-syntax

