Direct Runner vs Dataflow Runner

e Direct Runner: process a small amount of data; executes pipelines
on your local machine.

e Dataflow Runner: process a large amount of data; run your
pipeline with the Cloud Dataflow service, the runner uploads your
executable code and dependencies to a Google Cloud Storage bucket
and creates a Cloud Dataflow job, which executes your pipeline on
managed resources in Google Cloud Platform. There will be
overhead for setting up cluster.

ParDo vs DoFun

e ParDo is the computational pattern of per-element computation.
The DoFn , here I called it fn , is the logic that is applied to
each element.Pardo takes a DoFn subclass argument

ParDo

e Similar to WHERE in SQL
e TInput elements are processed independently and in parallel.
® Output are bundled into a new PCollection.

DoFn

e DoFn is an argument to ParDo providing the code to use to process
elements of the input PCollection.The function to use to process
each element is specified by a DoFn<InputT, OutputT>, primarily

via i1ts ProcessElement method.

GroupByKey
e Similar to GROUP BY in SQL
® Takes a PCollection as input where each element is a (k,v) pair,
which is why you may return a tuple for this transformation.
® Produces a PCollection as output where each element is a (k, list
of v) pair

CoGroupByKey
Similar to FULL OUTER JOIN in SQL
Takes >= 2 PCollections as input

Every element in the input is tuple (k,v) pair

Produces a PCollection as output where each element is a (k, v)
pair

https://beam.apache.org/releases/javadoc/2.2.0/org/apache/beam/sdk/transforms/ParDo.html
https://beam.apache.org/releases/javadoc/2.2.0/org/apache/beam/sdk/values/PCollection.html
https://beam.apache.org/releases/javadoc/2.2.0/org/apache/beam/sdk/transforms/DoFn.html
https://beam.apache.org/releases/javadoc/2.2.0/org/apache/beam/sdk/transforms/DoFn.ProcessElement.html

® As a result, the result for each key is a list of dictionaries
containing all data associated with that key in each input
collection.

emails_list = [
("amy', 'amy@example.com'},

('carl', 'carl@example.com'),
(*julia', 'julia@example.com'),
(‘carl', 'carl@email.com'},

1

phones_list = [
(‘amy', '111-222-3333'),
('james', '222-333-4444'),
(‘amy', '333-444-5555'),
(‘carl', '444-555-6666'),

1

emails
phones =

p | 'CreateEmails' >> beam.Create(emails_list)
p | 'CreatePhones' >> beam.Create(phones_list)

After CoGroupByKey , the resulting data contains all data associated with each unique key from any of the input collections.
Java Python

results = [

(

‘amy',
{
'emails': ['amy@example.com'],
'phones': ['111-222-3333', '333-444-5555']
),
(
'carl',
{
'emails': ['carl@email.com', 'carl@example.com'l],
'phones': ['444-555-6666"]
B g
('james"', {
'emails': [1, 'phones': ['222-333-4444']
B e
(*julia', {
'emails': ['julia@example.com'], 'phones': []
),

Side Input
® Ordinary values or entire PCollection
Optional arg
Extra arg to process () method
Basic: process(self, input)
Single: process(self, input, side inputl)

Multiples: process(self, input, side inputl, side input2,
side input3...)

*Helpful link:
https://www.waitingforcode.com/apache-beam/side-input-apache-beam/read

For Milestone 6:

Be sure to include [DIR PATH = BUCKET + '/output/' +
d $H %M $s') + '/'] in your run(), since

you are no longer run on your local machine. Explicitly specify the

o\
o\

datetime.datetime.now () .strftime ('%Y %m

output location in wWriteToText (DIR PATH + '<file name>.txt')

https://www.waitingforcode.com/apache-beam/side-input-apache-beam/read

