
‭CS 329E Final Project, due Thursday,‬‭04/25‬‭.‬‭Due date‬‭is not flexible.‬

‭Rules‬

‭●‬ ‭Choose one of the three suggested ideas or propose your own‬
‭●‬ ‭Make sure your teammate is on board with your selection (!)‬
‭●‬ ‭Let the instructors know by 5pm today (04/12) which idea you’re signing up for‬
‭●‬ ‭If you want to propose your own project, speak to Prof. Cohen during today’s work‬

‭period to get approval‬
‭●‬ ‭You only have two class periods to work on your project, including this one‬
‭●‬ ‭As you start implementing, keep in mind the most challenging technical aspects of the‬

‭work so that you can share back during Presentation Day on Friday, 04/26‬

‭Option 1: Apply change data capture at-scale‬

‭Implement a CDC pipeline for each target table in the database using the same logic as Project‬
‭8. After applying the changes to the staging tables, perform the standard referential integrity‬
‭checks, removing any orphan records found. Implement a verification function for each pipeline‬
‭that compares the record count in staging with the active record count in consumption to ensure‬
‭that they match. If the counts don’t match, return an error to the user. Port your working‬
‭pipelines to Airflow. The end result should be a one-click workflow that applies CDC on all your‬
‭target tables. Publish the Colab notebooks and Airflow DAGs to your repo.‬

‭Note: This project option does not involve the use of a language model. If you want to work with‬
‭Gemini, you should choose options 2 or 3 or propose your own project.‬

‭Option 2: Apply data enrichment at-scale‬

‭Iteratively enrich your staging tables with additional data signals, including replacing missing‬
‭values with AI generated ones. The generated values should either be based on existing values‬
‭from the same record or on a collection of values from related records. When working with more‬
‭complex prompts, keep in mind that the language model’s context window is limited to 1 million‬
‭tokens.‬

‭This project is very similar to our work from Project 9, except that we are now broadening the‬
‭scope as follows:‬

‭●‬ ‭Implement 5-10 enrichment scenarios (as opposed to only 3)‬
‭●‬ ‭Port the enrichment pipelines to Airflow‬
‭●‬ ‭Apply the enrichment to all the records of the table‬

‭Begin by prototyping your enrichment pipelines in Colab on a few hundred records. Port to‬
‭Airflow only once you have vetted each pipeline. The end result should be a one-click workflow‬



‭that executes all the enrichments. Publish the Colab notebooks, Airflow DAGs, and ERDs to‬
‭your repo.‬

‭Note: This project option requires a Gemini Pro quota limit of 1000 QPM or higher.‬

‭Option 3: Experiment with error detection‬

‭The basic idea of this project is to use the language model to detect any errors present in the‬
‭attribute values of your staging tables. Begin by finding the functional dependencies in your‬
‭dataset. Some common examples of functional dependencies include the state, country, zip‬
‭code, category, and age.‬

‭Choose three of your functional dependencies which are not keys. For each one, manually‬
‭replace a few values in your staging table with some erroneous ones. Then ask the language‬
‭model to detect if an error exists in each record of the table and to suggest the corrected value.‬
‭Experiment with prompts using zero shot and few shot learning.‬

‭Save the detected errors into an auxiliary table. Create the table in your AI staging dataset from‬
‭Project 9 and name it Error. The table should include the following details:‬

‭●‬ ‭the event timestamp (timestamp when the error was detected)‬
‭●‬ ‭the name of the table in which the error was found‬
‭●‬ ‭the name of the column in which the error was found‬
‭●‬ ‭the primary key value of the record in which the error occurred‬
‭●‬ ‭the value of the detected error‬
‭●‬ ‭the suggested value from the LLM‬
‭●‬ ‭the LLM prompt used‬

‭Note: if we were evaluating multiple language models, we would also be storing the details of‬
‭the model used.‬

‭Implement your error detection pipelines in a Colab notebook over a subset of records (a few‬
‭hundred per table should suffice). Once this is done, port your pipelines to Airflow so that you‬
‭can apply the detection functions to the full table. The end result should be a one-click error‬
‭detection workflow that covers your three error detection scenarios.‬

‭Note: This project option requires a Gemini Pro quota limit of 1000 QPM or higher.‬


