
‭CS 329E Project 3, due Thursday, 02/15.‬

‭Recall our data acceptance criteria from Project 1, copied below for convenience. In this project,‬
‭we assume that your raw data conforms to criteria #5 and #7. Our focus will be twofold: remodel‬
‭the entities that meet criteria #5 and #7 and create remaining tables in the staging area. By the‬
‭end of this project, the staging area should be complete.‬

‭Criteria‬ ‭Description‬ ‭Min No.‬ ‭Examples‬

‭1‬ ‭Dataset must have multiple unique entities. These‬
‭are logical entities as opposed to how the raw‬
‭tables are layed out.‬

‭5‬ ‭Air Carrier, Airport, Flight,‬
‭Flight History, Snack, and‬
‭Meal‬

‭2‬ ‭Dataset must come from multiple sources of data.‬
‭You are free to come up with your own sources, you‬
‭do not need to use the same ones I did.‬

‭4‬ ‭BIRD, Faker, Open Food‬
‭Facts, and The Meal DB.‬

‭3‬ ‭Functional dependencies‬‭must hold on all tables,‬
‭which means that the values are consistent across‬
‭each record. For example, if a record has (city,‬
‭state, country), we want the values of city and state‬
‭to determine the value of country.‬

‭Applies to‬
‭all tables‬

‭meals.meal_name ->‬
‭meals.cat_name‬

‭bird_airports.code ->‬
‭bird_airports.description‬

‭4‬ ‭There exists a column among the raw tables that‬
‭stores more than one property in a given cell.‬
‭Description and comment columns are usually a‬
‭good place to look for such embeddings.‬

‭2‬ ‭bird_airports.description‬
‭contains these‬
‭components (city, state,‬
‭airport name)‬

‭5‬ ‭There exists two raw tables coming from two‬
‭different sources that represent the same entity.‬
‭However, the entity may have slightly different‬
‭properties in one table from another.‬

‭1‬ ‭bird_airport and‬
‭faker_airport both‬
‭represent an Airport entity‬

‭6‬ ‭There exists a raw table that represents more than‬
‭one entity. You can usually spot those tables by‬
‭looking for repeated values among their records.‬

‭1‬ ‭The airlines table‬
‭represents two different‬
‭entities: Flight and Flight‬
‭History.‬

‭7‬ ‭There exists at least two disjoint entities coming‬
‭from different sources that could be connected‬
‭through a third entity. The third entity is not present‬
‭in the dataset.‬

‭1‬ ‭Flights, Snacks, and‬
‭Meals can be joined‬
‭through an In Flight‬
‭Shopping or an In Flight‬
‭Meal Service entity.‬
‭Neither one is present in‬
‭the raw area.‬

https://en.wikipedia.org/wiki/Functional_dependency


‭Objectives‬
‭●‬ ‭To remodel the tables that meet criteria #5, create a new table that merges the records‬

‭from the two raw tables which represent the same entity. The new table should include‬
‭the combined properties of its source tables.‬

‭●‬ ‭To address criteria #7, create and populate a junction table that connects the disjoint‬
‭entities so that they can be queried together. The junction table should be based on‬
‭some simple business logic.‬

‭●‬ ‭Tables that were not affected by criteria 4-7 should be copied into the staging area.‬
‭Perform the usual referential integrity checks on those tables. The staging area should‬
‭be complete by the end of this project.‬

‭Implementation Guidelines‬

‭The following guidelines apply only to the tables and columns in the staging area. They do not‬
‭apply to the raw area. The raw tables remain untouched.‬

‭●‬ ‭All tables should be connected and have referential integrity. If a table in the raw layer‬
‭contains some duplicate records, remove those records from the table in the staging‬
‭layer.‬

‭●‬ ‭The business logic you used to drive the implementation of your junction table should be‬
‭documented in your notebook. The business logic does not need to be 100% accurate. It‬
‭is your best guess based on your knowledge of the domain and the data which you have‬
‭at your disposal.‬

‭●‬ ‭The logic for addressing criteria #5 should be in a notebook called‬‭merge.‬‭ipynb‬‭.‬
‭●‬ ‭The logic for addressing criteria #7 should be in a notebook called‬‭join.ipynb‬‭.‬
‭●‬ ‭The logic for copying tables from raw which were unaffected by criteria 4-7, should be‬

‭placed in a notebook called‬‭catchall.ipynb‬‭.‬
‭●‬ ‭Tables should be properly typed and have a‬‭data_source‬‭field that stores the name of‬

‭the data source from which they came (e.g. BIRD, Faker, etc.).‬
‭●‬ ‭Table and column names should follow the naming convention adopted for the staging‬

‭area.‬
‭●‬ ‭Update your ERD and data dictionary for the staging area to reflect the new entities you‬

‭added in this project.‬
‭●‬ ‭Publish to your repo:‬‭merge.‬‭ipynb, join.ipynb, catchall.ipynb,‬‭erd-stg-v2.pdf‬‭, and‬

‭data-dict-stg-v2.xlsx‬‭.‬
‭●‬ ‭Create a‬‭submission.json‬‭file and upload it to Canvas‬‭by the deadline. Only one person‬

‭per group needs to do this step.‬

https://github.com/cs327e-spring2019/snippets/wiki/submission.json


‭CS 329E Project 3 Rubric‬
‭Due Date: 02/15/24‬

‭merge.ipynb‬‭is thorough and meets all requirements‬

‭-5‬‭did not update data source column in merged‬‭table‬
‭-5‬‭did not drop staging table at the end‬
‭-5‬‭did not set primary keys‬
‭-5‬‭did not set foreign keys‬
‭-10‬‭did not use left join or did not attempt‬‭to get all records, including nulls‬
‭-10‬‭did not verify contents of merged table‬
‭-15‬‭lack of create table statements‬
‭-25‬‭missing file‬

‭25‬

‭join.ipynb‬‭is thorough and meets all requirements‬

‭-5‬‭did not update global variables in python code,‬‭such as project_id, stg_name,‬
‭etc (if applicable)‬
‭-10‬‭did not set primary and/or foreign keys‬
‭-10‬‭did not verify contents of new table‬
‭-20‬‭incorrect logic or code in table creation‬
‭-25‬‭missing file‬

‭25‬

‭catchall.ipynb‬‭is thorough and meets all requirements‬

‭-5‬‭did not drop staging table at the end (unless‬‭indicated there was no need)‬
‭-5‬‭did not add data_source field to the tables‬
‭-10‬‭did not verify table counts‬
‭-10‬‭did not add primary keys‬
‭-15‬‭did not properly remove duplicate entries‬‭in tables‬
‭-25‬‭missing file‬

‭25‬

‭ERD diagram accurately depicts relations between the staging tables‬

‭-5‬‭for each missing important link‬
‭-5‬‭for each missing staging table‬
‭-10‬‭ERD not aligned with data dictionary columns‬
‭-15‬‭missing file‬

‭15‬

‭Data dictionary has all important information about staging tables‬

‭-2‬‭for each missing column of staging table‬
‭-5‬‭missing description column‬
‭-10‬‭missing file‬

‭10‬

‭submission.json‬‭submitted into Canvas. Your project‬‭will not‬‭be graded without this‬
‭submission. The file should have the following schema:‬

‭{‬

‭Required‬



‭"commit-id": "your most recent commit ID from Github",‬
‭"project-id": "your project ID from GCP"‬

‭}‬

‭Example:‬

‭{‬
‭"commit-id": "‬‭dab96492ac7d906368ac9c7a17cb0dbd670923d9‬‭",‬
‭"project-id": "some-project-id"‬

‭}‬

‭Total Credit:‬ ‭100‬


