CS 329E Project 3, due Thursday, 02/15.

Recall our data acceptance criteria from Project 1, copied below for convenience. In this project,
we assume that your raw data conforms to criteria #5 and #7. Our focus will be twofold: remodel
the entities that meet criteria #5 and #7 and create remaining tables in the staging area. By the

end of this project, the staging area should be complete.

Criteria Description Min No. Examples

1 Dataset must have multiple unique entities. These 5 Air Carrier, Airport, Flight,
are logical entities as opposed to how the raw Flight History, Snack, and
tables are layed out. Meal

2 Dataset must come from multiple sources of data. 4 BIRD, Faker, Open Food
You are free to come up with your own sources, you Facts, and The Meal DB.
do not need to use the same ones | did.

3 Functional dependencies must hold on all tables, Applies to | meals.meal _name ->
which means that the values are consistent across all tables | meals.cat_name
each record. For example, if a record has (city, bird ai q
state, country), we want the values of city and state Ir _a!rports.co e->

. bird_airports.description
to determine the value of country.

4 There exists a column among the raw tables that 2 bird_airports.description
stores more than one property in a given cell. contains these_
Description and comment columns are usually a components (city, state,
good place to look for such embeddings. airport name)

5 There exists two raw tables coming from two 1 bird_airport and
different sources that represent the same entity. faker_airport both
However, the entity may have slightly different represent an Airport entity
properties in one table from another.

6 There exists a raw table that represents more than 1 The airlines table
one entity. You can usually spot those tables by represents two different
looking for repeated values among their records. entities: Flight and Flight

History.
7 There exists at least two disjoint entities coming 1 Flights, Snacks, and

from different sources that could be connected
through a third entity. The third entity is not present
in the dataset.

Meals can be joined
through an In Flight
Shopping or an In Flight
Meal Service entity.
Neither one is present in
the raw area.



https://en.wikipedia.org/wiki/Functional_dependency

Objectives

To remodel the tables that meet criteria #5, create a new table that merges the records
from the two raw tables which represent the same entity. The new table should include
the combined properties of its source tables.

To address criteria #7, create and populate a junction table that connects the disjoint
entities so that they can be queried together. The junction table should be based on
some simple business logic.

Tables that were not affected by criteria 4-7 should be copied into the staging area.
Perform the usual referential integrity checks on those tables. The staging area should
be complete by the end of this project.

Implementation Guidelines

The following guidelines apply only to the tables and columns in the staging area. They do not
apply to the raw area. The raw tables remain untouched.

All tables should be connected and have referential integrity. If a table in the raw layer
contains some duplicate records, remove those records from the table in the staging
layer.

The business logic you used to drive the implementation of your junction table should be
documented in your notebook. The business logic does not need to be 100% accurate. It
is your best guess based on your knowledge of the domain and the data which you have
at your disposal.

The logic for addressing criteria #5 should be in a notebook called merge.ipynb.

The logic for addressing criteria #7 should be in a notebook called join.ipynb.

The logic for copying tables from raw which were unaffected by criteria 4-7, should be
placed in a notebook called catchall.ipynb.

Tables should be properly typed and have a data_source field that stores the name of
the data source from which they came (e.g. BIRD, Faker, etc.).

Table and column names should follow the naming convention adopted for the staging
area.

Update your ERD and data dictionary for the staging area to reflect the new entities you
added in this project.

Publish to your repo: merge.ipynb, join.ipynb, catchall.ipynb, erd-stg-v2.pdf, and
data-dict-stg-v2.xlIsx.

Create a submission.json file and upload it to Canvas by the deadline. Only one person
per group needs to do this step.



https://github.com/cs327e-spring2019/snippets/wiki/submission.json

CS 329E Project 3 Rubric
Due Date: 02/15/24

submission. The file should have the following schema:

{

merge.ipynb is thorough and meets all requirements 25
-5 did not update data source column in merged table
-5 did not drop staging table at the end
-5 did not set primary keys
-5 did not set foreign keys
-10 did not use left join or did not attempt to get all records, including nulls
-10 did not verify contents of merged table
-15 lack of create table statements
-25 missing file
join.ipynb is thorough and meets all requirements 25
-5 did not update global variables in python code, such as project_id, stg_name,
etc (if applicable)
-10 did not set primary and/or foreign keys
-10 did not verify contents of new table
-20 incorrect logic or code in table creation
-25 missing file
catchall.ipynb is thorough and meets all requirements 25
-5 did not drop staging table at the end (unless indicated there was no need)
-5 did not add data_source field to the tables
-10 did not verify table counts
-10 did not add primary keys
-15 did not properly remove duplicate entries in tables
-25 missing file
ERD diagram accurately depicts relations between the staging tables 15
-5 for each missing important link
-5 for each missing staging table
-10 ERD not aligned with data dictionary columns
-15 missing file
Data dictionary has all important information about staging tables 10
-2 for each missing column of staging table
-5 missing description column
-10 missing file
submission.json submitted into Canvas. Your project will not be graded without this Required




"commit-id": "your most recent commit ID from Github",
"project-id": "your project ID from GCP"

}
Example:

{
"commit-id": "dab96492ac7d906368ac9c7al7cb0dbd670923d9",

"project-id": "some-project-id"

}

100

Total Credit:




