
CS 378 Project 2, due Thursday, 09/19.

Part 1: Goals

This project has three main goals:
● extract some structured data from your text, pdf or images with Gemini
● load your structured data files (csv, json) from GCS to BQ
● analyze your data collection against some common data anomalies types to satisfy our

acceptance criteria

Part 2: Code Samples

The project2 folder of the snippets repo has some code samples and other artifacts that are
relevant for this project.

Note: You can skip the two extraction notebooks (1-air-travel-extract-*.ipynb). However,
you should run the data load notebook (2-air-travel-load.ipynb) in your own project. This
will load the air travel data to your BQ instance and help you follow along in future projects.

Part 3: Acceptance Criteria

Your data collection needs to meet certain criteria for subsequent projects to make sense and
for them to have enough scope. The criteria are formulated as a series of data anomaly types,
which you will check your data against. You want your data collection as a whole to suffer from
all 10 anomaly types. This means that you have sufficiently messy data to work with, which is
what we are aiming for.

Please review the list of criteria below and evaluate which elements of your data collection
satisfy each one. Note that criteria 5-10 represent different anomaly types that should be
present in the data.

Criteria Description Applicable
to Project

Air Travel Examples

1 Warehouse must be made up of multiple
independent data sources. You need at least 4
data sources.

All Airport Guide, Open
Flights, BTS, TSA, etc.

2 Warehouse must be composed of at least one
source whose type is unstructured. This can be
text, pdf, or images.

All Airport Businesses and
TSA Traffic were both
created from pdf files.



3 Warehouse must be composed of multiple logical
entities.

All Airports, Airlines, Airport
Businesses, Airport
Reviews, Flights, Routes,
Countries, Aircraft

4 Functional dependencies should hold across all
tables such that the values within a record are
consistent.

All The name of an airport, its
city, state, country and
code need to make sense.
This is mostly to guard
against synthetic data that
is randomly generated.

5 There exists a field in any table of the warehouse
whose assigned data type does not best fit its
domain of values.

3 airports.timezone stores a
numeric value as a string.
tsa_traffic.date is stored as
a string instead of date

6 There exists a field in any table of the warehouse
whose null values are represented as empty
strings, "\n" or something similar.

3 source_airport_id in the
flight_routes table

7 There exists a field in any table of the warehouse
that stores the values of multiple attributes in a
single cell. The values represent different
attributes.

3 flight_delays.airport_name
is composed of city, state,
and airport. All three
attributes are stored in the
same column

8 There exists a field in any table of the warehouse
that stores multiple values in the same cell. The
values represent a list of elements for the same
attribute.

4 flight_routes sometimes
stores a list of equipments
in the same cell,
airport_businesses
sometimes stores a list of
menu items in the same
cell.

9 There exists two tables in the warehouse which
originated from different sources and which have
similar data. Moreover, the tables in question use
two different identifier systems to refer to the
same entity.

4 airport information is
repeated across multiple
tables in a non-standard
way. See for example
airportRef and aiportIdent
versus airport_id and
airport_code.

10 There exists a table in the warehouse that
models more than one logical entity. This can
lead to storing repeated values within the same
table.

4 The flight_delays table has
information about airports,
airlines, and flight delays.
Fields like carrier_name

https://en.wikipedia.org/wiki/Functional_dependency


and airport_name shouldn’t
be in this table.

What should you do if your warehouse is missing one or more criteria?
● Think about ways to broaden your data domain and start looking for additional related

datasets.
● Consider choosing a different domain that has more available data. If you go down this

route, please note that you’ll need to redo most of Project 1 in a relatively short
timespan.

● Given that you have two weeks to complete this assignment, I expect your data to satisfy
all 10 criteria, including the six anomaly types. If you are missing one or more criteria,
please be sure to get sign off from the Professor.

Part 4: Implementation Guidelines

● Create a new folder in your repo and name it project2. Store all of your artifacts for this
project in the project2 folder.

● Develop a Colab notebook that extracts some interesting data from your unstructured
dataset and save the results as csv or json files stored in your bucket on GCS. Name
your notebook 1-[your-domain]-extract-[your-dataset].ipynb.

● Develop a Colab notebook that loads the data files into BQ. Load each file into its own
table in the raw area. The only exception is if you have a collection of files which
represent the same type of data and are split into multiple files by date. In that case, you
want to load all the files into the same table. Name this notebook
2-[your-domain]-load.ipynb.

● Annotate your notebooks with section headers and short Markdown comments to
improve their readability.

● Store your BQ tables in a raw dataset. The dataset name should follow the naming
convention of [your-domain]_raw.

● When creating the BQ tables, add two new columns to the end of each table as follows:
○ _data_source (STRING): should default to the name of the data source. Choose

a descriptive name to identify each data source (e.g. "openflights").
○ _load_time (TIMESTAMP): should default to the current timestamp and represent

the time in which the records were loaded into the table.
● Choose descriptive table names. Note that the name of your table can be different from

the name of the file from which it is sourced.
● Lowercase both the table and column names. Use underscores (instead of hyphens or

camel case) to name a table name or column name with multiple words in its name.
● Update your data dictionary from Project 1 with the work that you’ve done in this project.

For example, update the attribute list and any other details which have changed.
● Update your ERD with the work you’ve done in this project. You do not need to add the

_data_source and _load_time fields to the diagram as those fields are understood and
would only end up cluttering the diagram.



● Review the acceptance criteria in Part 3 and cross-reference the list of anomaly types
against your data collection. Document how your data satisfies each anomaly using a
specific example. If your data is missing an anomaly or if you’re unsure if the anomaly
applies to it, make note of that as well and speak to the Professor or TA. Name your
document anomaly-analysis.md.

● Publish to your repo: 1-[your-domain]-extract.ipynb,
2-[your-domain]-load.ipynb, [your-domain]-data-dict.xlsx, and
[your-domain]-erd.pdf, and anomaly-analysis.md. Remember that all artifacts
should go into your project2 folder.

● Create a submission.json file and upload it to Canvas by the deadline. Only one person
per group needs to do this step.

Part 5: Implementation Hints

● When you start working with Gemini, you will probably hit a quota limit. The quota is set
ridiculously low by default (5 requests / minute). You can apply for a quota increase from
here. You should ask for 200 requests / minute. It should get approved automatically
within 5 minutes unless you are on the free trial. If on the free trial, you should switch
billing accounts before requesting the quota increase. Please speak to the Professor if
you face any issues.

● When loading the data into BQ, you may need to relax the table schema constraints if
you run into problems. For example, if you have defined a field as mandatory, you may
need to redefine it as nullable. If you have defined a field as a DATE type, you may need
to redefine it as a STRING. The goal here is to get the data into BQ and massage it later.
This is known as an “ELT” approach (as opposed to “ETL”).

https://console.cloud.google.com/iam-admin/quotas


Grading Rubric
Due Date: 09/19/24

1-[your-domain]-extract.ipynb correctly written and indicates successful
extraction

-5 for each missing output
-10 did not extract structured data with LLM
-10 did not store output from extraction in csv or json
-15 unable to verify the output from extraction process with GCS commands
-30 missing file
-20 Didn’t run the code

30

2-[your-domain]-load.ipynb correctly written and indicates successful table
creation

-5 for each missing output
-5 column names and/or table names not lowercase
-5 did not include data_source or load_time fields in tables
-5 did not update variable values (project_id, bucket_name, etc)
-15 unable to verify loads through bigquery commands
-30 missing file
-20 Didn’t run the code

30

anomaly-analysis.md is thorough and has all information. All 10 criteria, including
the six anomaly types should be met unless you have received a sign off from the
Professor.

-5 for each criteria explanation not thorough
-5 if crucial misunderstanding of each criteria
-30 missing file

30

[your-domain]-data-dict.xlsx and [your-domain]-erd.pdf
-5 for each missing important link in ERD
-5 data dictionary does not contain essential information of a table
-5 ERD not aligned with data dictionary columns
-10 missing ERD or data dictionary

10

submission.json submitted into Canvas. Your project will not be graded without this
submission. The file should have the following schema:

{
"commit-id": "your most recent commit ID from Github",
"project-id": "your project ID from GCP"

}

Example:

{
"commit-id": "dab96492ac7d906368ac9c7a17cb0dbd670923d9",
"project-id": "some-project-id"

}

Required



Total Credit: 100


