CS 378 Project 6, due Thursday, 11/06.

Objectives

Our high-level objectives are to orchestrate and modularize the data transformations for our
warehouse so that they can become more automated and portable. We will do that by standing
up a dbt project and converting our staging, intermediate, and mart layers from Colab to dbt.

Conversion Strategies

Go through our staging, intermediate, and mart Colab notebooks and identify the SQL and
Python blocks which mutate the database. Follow the conversion strategies detailed below
based on the type of mutation in question:

For create table statements, which can be in the form of create-table-as-select,
insert-table-as-select, and pandas Dataframe writes, convert them to a dbt model. SQL
statements should be translated into SQL models while Python blocks should be
translated into Python models:

o SQL models comprise of one or more common table expressions, followed by a
select statement for dbt to evaluate and persist as a table.

o Python models contain data manipulations that can’t be easily done in SQL,
namely interacting with the LLM and converting the output to a PySpark
Dataframe. Note: Python models get executed on a Dataproc cluster which uses
a PySpark runtime, hence the need to convert from Pandas to PySpark
Dataframe.

o All models that source from the raw layer should call the source() function to read
the raw tables.

o All models that source from the staging layer or above should call the ref()
function to read the staging or intermediate tables, whether they are the final
table or just a temp table.

For any DML statements, copy them into post-hooks or rewrite them into select
statements.

For uniqueness, not null tests and referential integrity tests, convert them to yaml format
and add them to in models/intermediate/schema.yml using dbt’s unique and not null
and relationship constructs. Note that in order to test for the uniqueness of a
combination of fields, an additional macro is required (for more details on macros, see
hints section).

Copy any drop table statements to remove temp tables into post-hooks and attach them
to the final model so that they get deleted only after the final table has been created. For
example, if tmp_airports is a temp table that persists some intermediate results and is
used in the creation of the Airport table, add the drop table statement into the
post-hook of the Airport model.



https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/dataframe.html
https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/dataframe.html
https://docs.getdbt.com/reference/dbt-jinja-functions/source
https://docs.getdbt.com/reference/dbt-jinja-functions/ref
https://docs.getdbt.com/reference/resource-configs/pre-hook-post-hook
https://docs.getdbt.com/reference/resource-properties/data-tests#not_null
https://docs.getdbt.com/reference/resource-properties/data-tests#not_null
https://docs.getdbt.com/reference/resource-properties/data-tests#relationships
https://github.com/cs378-fall2024/snippets/blob/main/project6/air_travel/macros/unique_combination_of_columns.sql
https://docs.getdbt.com/reference/resource-configs/pre-hook-post-hook

Implementation Details

Hints

Materialize all models as BQ tables. This is defined in the dbt_project.yml file, which also
contains the folder structure and BQ datasets.

Follow the naming convention of dbt [your-domain] stg, dbt [your-domain] int,
and dbt_[your-domain] mrt for naming your datasets. Follow the dbt project.yml
example file.

Specify your raw tables in a models/staging/schema.yml file. This will allow you to
refer to them using the source() function from your staging models. Follow the
schema.yml example file.

Run the dbt run command to compile your models. This should not only create the
tables, but also create the primary key constraints on those tables. At this time, there is a
bug in the bigquery adaptor that is preventing the foreign key constraints from getting
created. Don’t worry if they don’t show up so long as you specify them in schema.yml.
Run the dbt test command to run your data integrity tests, namely uniqueness, not null,
and relationship checks.

When you are ready to commit your code, create a new folder in your repo for this
project and name it projecté. Copy your top-level dbt project folder (e.g. air_travel) into
the project6. You can exclude the dbt logs and target folders from your commit.

Use custom schemas to specify the naming of your BigQuery datasets. This comes in
the form of a macro, generate schema name, which you can copy from the snippets
repo, and place in your macros folder.

Use the additional macro, unique combination of columns, to test for the uniqueness
of composite primary keys. You can copy the code from the snippets repo and place it in
your own macros folder.

Generate one or more lineage graphs that capture the dependencies between the
models from your warehouse. To do that, you'll first need to compile the documentation
for your warehouse and then bring up the Ul, just like we did during the setup. Take a
screenshot of your full lineage graph. If your graph has > 30 nodes and is difficult to
visualize in its entirety, take additional screenshots of each layer (staging, intermediate,
and mart). Save the screenshots in a new folder under the projecté folder, called

lineage.
Create the usual submission.json file and upload it to Canvas by the deadline. Only one
person per group needs to do this step.

To get started, run the dbt init [your-domain] command to generate a new dbt
project for your warehouse. You'll need to modify .dbt/profiles.yml justlike we did
during the setup. From there, you should create the proper directory structure under the
models folder and then modify the default dbt_project.yml. You should also create the
two macros and the models/staging/schema.yml file.


https://github.com/cs378-fall2024/snippets/blob/main/project6/air_travel/dbt_project.yml
https://github.com/cs378-fall2024/snippets/blob/main/project6/air_travel/dbt_project.yml
https://github.com/cs378-fall2024/snippets/blob/main/project6/air_travel/models/staging/schema.yml
https://docs.getdbt.com/reference/node-selection/syntax
https://docs.getdbt.com/reference/commands/test
https://docs.getdbt.com/docs/build/custom-schemas
https://github.com/cs378-fall2024/snippets/blob/main/project6/air_travel/macros/generate_schema_name.sql
https://github.com/cs378-fall2024/snippets/blob/main/project6/air_travel/macros/generate_schema_name.sql
http://unique_combination_of_columns
https://github.com/cs378-fall2024/snippets/tree/main/project6/lineage
https://docs.getdbt.com/reference/commands/cmd-docs

| suggest keeping around your temp tables in BigQuery until you have verified the final
models that they need to feed into. Otherwise, you will be wasting time waiting for dbt to
compile and recompile the temp models.

To speed up the dbt run command, you can increase the number of threads from 1 to 3
in your .dbt/profiles.yml. This will allow dbt to execute up to 3 models concurrently
without violating dependencies.

If you are renaming a model or changing the schema of an existing model, use the dbt
run --full-refresh option. More details here.

For the primary key, foreign key, uniqueness, not null and relationship tests, | would
suggest copying one of the schema. ym1 files from the snippets repo (such as this one)
and using it as your starting point.

If you get an “Insufficient quota” error, whether it be CPU or Persistent Disk, go to the
Quotas page and request an increase for the resource in question. For CPU, | would
recommend requesting 48 CPUs in the us-central1 region, which would be double from
the current allocation. For storage, | would recommend also doubling the volume of
available disk to 8 TB. These requests should get auto-approved within minutes. If they
don’t, please contact me as soon as possible.

Compute CPUs Quota region : us-central1 24 (| 16.67%
Engine API

To create the lineage graphs, run dbt docs generate followed by dbt docs serve
--port 8181 on the machine where you are running dbt. If you are running dbt on a VM,
you’ll also need to bring up a local terminal, run gcloud init, and then set up the ssh

tunnel to connect to the VM. You can use this command to create the tunnel:
gcloud compute ssh dbt --project [GCP-PROJECT ID] --zone us-centrall-c --
-NL 8181:1localhost:8181

Be sure to replace [Gcp-PROJECT ID] with your own project. Then, open a browser on
your local machine and navigate to http://localhost:8181. To view the lineage graph,

click on this icon: on the bottom-right corner of the home page. The graph should
look similar to the image below:


https://docs.getdbt.com/reference/commands/run#refresh-incremental-models
https://github.com/cs378-fall2024/snippets/blob/main/project6/air_travel/models/intermediate/airports/schema.yml
https://pantheon.corp.google.com/iam-admin/quotas

Lineage Graph

mp_arine_cones mtchec
Caumry [

i acos Pt Deavs
o s

s oL ronfio roves ot _outes

ETp—
[a—
. — o et squoman_umestsd
v arpons g
mp_srorts_marged cao_us

vl rawalpers apans

mparports i
s vttt e e 11 cuplcatos

rST—
EaTT—— oo busness

oo e popuary by akpot

et e seoars o

.o word
nn_sion.

S— oy pg—p—

lowast rtoe o

air_travel

untagged




CS 378 Project 6 Rubric
Due Date: 11/07/24

dbt project folder is thorough and meets all requirements
-5 for each missing table or model file in staging, intermediate or mart datasets
-4 for each empty table in staging, intermediate or mart datasets
-2 for each failing uniqueness, not null or relationship test
-2 for each missing primary key or foreign key constraint from schema. yml
-2 for each missing primary key constraint from a final intermediate table
-2 for each model file not using source () or ref ()
-3 for not following dataset naming convention
-90 missing dbt project folder under project6

90

Lineage folder contains one or more screenshots of the model dependency graph
-1 for each missing model or dependency that doesn’t correspond to the model
files in the repo
-2 model names are not legible in the provided screenshot(s)
-10 missing lineage folder under projecté

10

submission.json submitted into Canvas. Your project will not be graded without this
submission. The file should have the following schema:

{

"commit-id": "your most recent commit ID from Github",
"project-id": "your project ID from GCP"

}

Example:

{
"commit-id": "dab96492ac7d906368ac9c7al7cb0dbd6e70923d9",
"project-id": "some-project-id"

Required

Total Credit:

100




