
CS 329E Project 6, due Thursday, 04/17.

Objectives

Implement an end-to-end data pipeline in dbt from your previously developed SQL and python
notebooks. This will entail crafting dbt models, executing them, and testing the generated tables
for data integrity.

Methodology

Go through your staging, intermediate, and mart notebooks and identify the SQL and Python
blocks which contain one or more mutations. Apply the appropriate conversion strategy detailed
below based to the type of mutation you are evaluating:

●​ For create-table-as-select, insert-table-as-select, and pandas Dataframe writes, convert
each one to a dbt model such that SQL statements are translated into dbt SQL models
and Python blocks are translated into dbt Python models:

○​ SQL models should have one or more common table expressions, followed by a
select statement for dbt to evaluate and persist as a table.

○​ Python models should contain data manipulations that can’t easily be expressed
in SQL, namely complex LLM interactions and conditional logic. They must return
a dataset formatted as a PySpark Dataframe. Note: Python models get executed
on a Dataproc cluster on GCP which uses a PySpark runtime, hence the need to
convert from Pandas to PySpark Dataframe.

○​ All models that source from the raw layer should call the source() function to read
the raw tables.

○​ All models that source from the staging layer or above should call the ref()
function to read the staging or intermediate tables, whether they are the final
table or just a temp table.

●​ For DML statements, copy them into post-hooks or rewrite them as select statements.

●​ For uniqueness, not null tests, and referential integrity tests, convert them to yaml and
add them to schema.yml using dbt’s unique and not null and relationship constructs.
Note that in order to test for the uniqueness of a combination of fields, an additional
macro is required, which you can copy from this example. For more details on macros
see the Hints section.

●​ Drop table statements can be translated into post-hooks and attached to the final model
so that they get executed only after the final table has been created. For example, if
tmp_airports is a temp table that persists some intermediate results and is used to
create the final table called Airport, add the drop table statement into a post-hook in
the Airport.sql file.

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/dataframe.html
https://docs.getdbt.com/reference/dbt-jinja-functions/source
https://docs.getdbt.com/reference/dbt-jinja-functions/ref
https://docs.getdbt.com/reference/resource-configs/pre-hook-post-hook
https://docs.getdbt.com/reference/resource-properties/data-tests#not_null
https://docs.getdbt.com/reference/resource-properties/data-tests#not_null
https://docs.getdbt.com/reference/resource-properties/data-tests#relationships
https://github.com/cs329e-spring2025/snippets/blob/main/project6/air_travel/macros/unique_combination_of_columns.sql
https://docs.getdbt.com/reference/resource-configs/pre-hook-post-hook

Implementation Plan

●​ After running the dbt init command, go to the models folder and delete the examples
subfolder. Create the following directory structure in its place:

○​ models/stg
○​ models/int
○​ models/mrt

●​ Edit your dbt_project.yml file based on this example. This file should specify your stg,
int, and mrt folder names, dataset names, as well as materialization type. Use table
materialization instead of view. Follow this naming convention: dbt_[your-domain]_stg,
dbt_[your-domain]_int, and dbt_[your-domain]_mrt for your BQ datasets.

●​ Create a macro in the dbt macros folder called generate_schema_name.sql and copy
the contents from this file into it. This macro is needed to avoid datasets being named
like this: dbt_air_travel_stg_dbt_air_travel_stg.

●​ To specify the data source for the staging tables, create a schema.yml file in your
models/stg directory by following this example. This will allow us to refer to the raw
tables using dbt’s source() function. Note: we are not creating a new raw dataset for
dbt, we will source the dbt generated staging tables from the existing raw dataset
([your-domain]_raw).

●​ Create your model files under each model subfolder, one layer at a time, starting with the
stg models. Look at the snippets repo to see how this was done for the air travel
example.

●​ Run the dbt run command to compile your models. This should be run iteratively so that
you can more easily debug errors. My suggestion is to port one model at a time. Make
sure that the model compiles and it generates the expected output in BQ before
continuing. Once you have the staging tables built, proceed with the int layer, etc. Note:
the intermediate layer will take you longer to port because sections of the Python code
will need to be rewritten for dbt.

●​ Once all of your intermediate models compile, prepare a schema.yml file with your
primary key and foreign key constraints by following this example. Primary key
constraints are specified as uniqueness and not null checks, while foreign key
constraints are specified as relationship checks.

All of your final int models should be represented in one or more schema.yml files. If all
of your int models are located in the same folder, you’ll end up with a single
schema.yml.If your int models are spread out across multiple subfolders, you’ll end up

https://github.com/cs329e-spring2025/snippets/blob/main/project6/air_travel/dbt_project.yml
https://github.com/cs329e-spring2025/snippets/blob/main/project6/air_travel/macros/generate_schema_name.sql
https://github.com/cs329e-spring2025/snippets/blob/main/project6/air_travel/models/stg/schema.yml
https://docs.getdbt.com/reference/node-selection/syntax
https://github.com/cs329e-spring2025/snippets/blob/main/project6/air_travel/models/int/schema.yml

with multiple schema.yml files. Remember that we’re only verifying the referential
integrity of the final tables in the int layer, so there is no need to create tests for the
staging and mart layers.

●​ Execute the dbt test command to run your data integrity tests on your final tables in the

int layer. Resolve any errors from those tests and ensure that your uniqueness, not null,
and relationship checks all pass. To resolve the errors, you will need to modify your
models, re-run them, and then re-run the failing tests until they pass. Don’t worry if the
primary key and foreign key constraints are not visible from BQ Studio. There is a bug in
the dbt bigquery connector that prevents those constraints from getting created correctly.
The key outcome is for all of your dbt tests to pass.

●​ Generate one or more lineage graphs that capture the dependencies between the
models. To do that, you’ll first need to compile the documentation for your warehouse
and then bring up the UI, just like we did during the setup. Take a screenshot of your full
lineage graph. If your graph has > 30 nodes and is difficult to visualize in its entirety, take
additional screenshots of each layer (staging, intermediate, and mart).

●​ To submit your work, clone your repo onto the VM and make a new project6 folder. Copy
your top-level dbt project folder into this project6 one. For the lineage graphs, make a
lineage subfolder in your project6 folder. Place your screenshots there.

●​ Once you have committed your code changes, create the usual submission.json file and
upload it to Canvas by the deadline. Only one person per group needs to do this step.

Hints

●​ To get started, run the dbt init [your-domain] command to generate a new dbt
project for your warehouse. You’ll need to modify .dbt/profiles.yml just like we did
during the setup. From there, you should create the proper directory structure under the
models folder and then modify the default dbt_project.yml. You should also create the
two macros and the models/stg/schema.yml file.

●​ I suggest keeping around your temp tables in BigQuery until you have verified the
correctness of the final models. Otherwise, you will be recompiling them several times,
which slows down development.

●​ To speed up the dbt run command, you can increase the number of threads from 1 to 3
in your .dbt/profiles.yml. This will allow dbt to execute up to 3 models concurrently
without violating dependencies.

●​ To save time, you can compile a specific model, or models that match a specific path,
using the --select option. More details here.

https://docs.getdbt.com/reference/commands/test
https://github.com/cs329e-spring2025/snippets/tree/main/project6/lineage
https://docs.getdbt.com/reference/commands/cmd-docs
https://docs.getdbt.com/reference/node-selection/syntax#examples

●​ If you are renaming a model or changing the schema of an existing model, use the dbt
run --full-refresh option. More details here.

●​ For the primary key, foreign key, uniqueness, not null and relationship tests, I would
suggest copying one of the schema.yml files from the snippets repo (such as this one)
and using it as your starting point.

●​ If you get an “Insufficient quota” error, whether it be CPU or Persistent Disk, go to the
Quotas page and request an increase for the resource in question. For CPU, I would
recommend requesting 48 CPUs in the us-central1 region, which would be double from
the current allocation. For storage, I would recommend also doubling the volume of
available disk to 8 TB. These requests should get auto-approved within minutes. If they
don’t, please contact me as soon as possible.

●​ To create the lineage graphs, run dbt docs generate followed by dbt docs serve
--port 8181 on the machine where you are running dbt. If you are running dbt on a VM,
you’ll also need to bring up a local terminal, run gcloud init, and then set up the ssh
tunnel to connect to the VM. You can use this command to create the tunnel:
gcloud compute ssh dbt --project [GCP-PROJECT_ID] --zone us-central1-c --
-NL 8181:localhost:8181

Be sure to replace [GCP-PROJECT_ID] with your own project. Then, open a browser on
your local machine and navigate to http://localhost:8181. To view the lineage graph,

click on this icon: on the bottom-right corner of the home page. The graph should
look similar to the image below:

https://docs.getdbt.com/reference/commands/run#refresh-incremental-models
https://github.com/cs378-fall2024/snippets/blob/main/project6/air_travel/models/intermediate/airports/schema.yml
https://console.cloud.google.com//iam-admin/quotas

CS 329E Project 6 Rubric
Due Date: 04/17/25

dbt project folder is thorough and meets all requirements
 -5 for each missing table or model file in staging, intermediate or mart datasets
 -4 for each empty table in staging, intermediate or mart datasets
 -2 for each failing uniqueness, not null or relationship test
 -2 for each missing primary key or foreign key constraint not captured in one or
 more schema.yml files
 -2 for each model file not using source() or ref()
 -3 for not following dataset naming convention
 -90 missing dbt project folder under project6

90

Lineage subfolder contains one or more screenshots of the model dependency graph
 -1 for each missing model or dependency that doesn’t correspond to the model
 files in the repo
 -2 model names are not legible in the provided screenshot(s)
 -10 missing lineage folder under project6

10

submission.json submitted into Canvas. Your project will not be graded without this
submission. The file should have the following schema:

{
 "commit-id": "your most recent commit ID from Github",​
 "project-id": "your project ID from GCP"
}

Example:

{
 "commit-id": "dab96492ac7d906368ac9c7a17cb0dbd670923d9",​
 "project-id": "some-project-id"
}

Required

Total Credit: 100

	Objectives
	Methodology
	Implementation Plan
	Hints

