Advanced Placement
Computer Science

Inheritance and Polymorphism

What’s past is prologue.

Don’t write it twice — write it once and reuse it.

Bekki George
James E. Taylor HS, Katy

Inheritance, Polymorphism, and Interfaces

Main Tenants of OO Programming

> Encapsulation
— abstraction, information hiding, responsibility
driven programming
> Inheritance
— code reuse, specialization "New code using old
code."
> Polymorphism
—do X for a collection of various types of objects,

where X is different depending on the type of
object

—"0OId code using new code."

Inheritance, Polymorphism, and Interfaces 2

Explanation of Inheritance

» 1 of the fundamental principles of OOP
— allows code reuse

> Models the /S-A relationship
— a student is-a person
— an undergraduate is-a student
— arectangle is-a shape
— arook is-a piece
» Contrast with the Has-A relationship (or uses a)
— a student has-a name
— a rook has-a position
— a Stack uses a List
> Is-a relationships indicate inheritance, has-a
relationships indicate composition (fields)

Inheritance, Polymorphism, and Interfaces

Nomenclature of Inheritance

> The extends keyword is used to specify which
preexisting class a new class is inheriting from
public class Student extends Person

» Person is said to be
— the parent class of Student
— the super class of Student
— the base class of Student
— an ancestor of Student

» Student is said to be
— a child class of Person
— a sub class of Person
— a derived class of Person
— a descendant of Person

Inheritance, Polymorphism, and Interfaces 4

v

The Mechanics of Inheritance
Java is a pure object oriented language

all code is part of some class

all classes, except one, must inherit from
exactly one other class
The Object class is the cosmic super class
— The Object class does not inherit from any other class
— The Object class has several important methods:
toString, equals, hashCode, clone, getClass
implications:
— all classes are descendants of Object

— all classes, and thus all objects, have a toString,
equals, hashCode, clone, and getClass method
toString, equals, hashCode, clone normally overridden

Inheritance, Polymorphism, and Interfaces 5

Inheriting from a Class
> If a class header does not include the
extends clause the class extends the
Object class by default
public class Card
- Object is an ancestor to all classes
— it is the only class that does not extend some
other class
> A class extends exactly one other class

— extending two or more classes is multiple
inheritance. Java does not support this directly,
rather it uses Interfaces.

Inheritance, Polymorphism, and Interfaces

Implications of Inheritance

» The sub class gains all of the behavior (methods) and data
regarding state (instance variables) of the super class and
all ancestor classes

» Sub classes can:

— add new fields

— add new methods

— override existing methods (change behavior)
*» Sub classes may not

— remove fields

— remove methods

> Note, even though an object may have instance variables
from its parent they may not be accessible by the code of
the child class if the fields are private

Inheritance, Polymorphism, and Interfaces 7

The Real Picture

Fields from Object class

Instance variables
declared in Object

A String
object

Fields from String class

Instance Variables
declared in String

Behaviors (methods) from String class

and Object class.

Inheritance, Polymorphism, and Interfaces

8

Access Modifiers and

Inheritance
> public
— accessible to all classes
> private

— accessible only within that class. Hidden from all sub
classes.

» protected

— accessible by classes within the same package and all
descendant classes

» Instance variables should be private

» protected methods are used to allow descendant
classes to modify instance variables in ways other
classes can't

Inheritance, Polymorphism, and Interfaces 9

Instance Variables - Private or Protected

> Why is it good design to make the instance
variables of an object private instead of protected?

» protected also allows classes in the same package
to access the data

— aclass in a package does not necessarily inherit from
other classes in the same package

> What if when the data changes something else
must be done? How would the descendant classes
know to do the required changes?
— Excellent example in the MBCS

Inheritance, Polymorphism, and Interfaces 10

MBCS Example

public class Fish

{ private Location myLoc;
// Why private?
// What if subclasses override move () and need to change
// the Location? Don't subclasses need access to it?
private Environment theEnv;
// If a Fish changes its location theEnv must be updated

protected void changelLocation (Location newLoc)

{ // Change location and notify Environment
Location oldLoc = location();
myLoc = newLoc;
environment () .recordMove (this, oldLoc);

// object is again at location myLoc in environment

}

Making myLoc private and forcing sub classes to call
changelocation to alter the location of a fish guarantees
the environment is correctly updated with the now location.

Inheritance, Polymorphism, and Interfaces 11

Shape Classes

» Declare a class called ClosedShape
— assume all shapes have x and y coordinates
— override Object's version of toString
» Possible sub classes of ClosedShape
— Rectangle
— Circle
— Ellipse
— Square
> Possible hierarchy
ClosedShape -> Rectangle -> Square

Inheritance, Polymorphism, and Interfaces 12

A ClosedShape class

public class ClosedShape
{ private int iMyX;
private int tMyY;

public ClosedShape ()
{ this(0,0); 1}

public ClosedShape (int x, int vy)
{ iMyX = x;

iMyY = y;
}

public String toString()
{ return "x: " + iMyX + " y: " + iMyY; }

public int getX () { return iMyX; }
public int getY () { return iMyY; }
}
// Other methods not shown

Constructors

» Constructors handle initialization of objects
» When creating an object with one or more ancestors (every
type except Object) a chain of constructor calls takes place
> The reserved word super may be used in a constructor to
specify which of the parent's constructors to call
— must be first line of constructor
» if no parent constructor is explicitly called the default, 0
parameter constructor of the parent is called
— if no default constructor exists a syntax error results
» If a parent constructor is called another constructor in the
same class may no be called
— no super () ;this () ; allowed. One or the other, not both
— good place for an initialization method

Inheritance, Polymorphism, and Interfaces 13 Inheritance, Polymorphism, and Interfaces 14
public class Rectangle extends ClosedShape
public class Rectangle extends ClosedShape t private int iMywidth;
. . . - private int iMyHeight;
{ private int iMyWidth;
. public Rectangle ()
private int iMyHeight; © this(0, 0),
}
public ReCtang:.Le (int width, int height, public Rectangle (int width, int height)
int x, int vy) { this(width, height, 0, 0);
{ super (x,V) ;)
// calls the 2 int constructor in public Rectangle (int width, int height,
int x, int y)
// ClosedShape (super(x,)
iMyWidth = width; iMyWidth = width;
iMyHeight = height; } iMyHeight = height;
} public String toString()
{ return super.toString() + " width: " + iMyWidth
+ " height: " + iMyHeight;
// other methods not shown .
}
Inheritance, Polymorphism, and Interfaces 15 Inheritance, Polymorphism, and Interfaces 16

Initialization method

public class Rectangle extends ClosedShape
{ private int iMyWidth;
private int iMyHeight;

public Rectangle()
{ init (0, 0);
}

public Rectangle(int width, int height)
{ init(width, height);
}

public Rectangle (int width, int height,
int x, int vy)

{ super(x, y):
init (width, height);

}

private void init (int width, int height)
{ iMyWidth = width;

iMyHeight = height;
}

Inheritance, Polymorphism, and Interfaces 17

Overriding methods
» any method that is not final may be
overridden by a descendant class
—overriding is a replacement of a behavior
— overloading is the addition of a behavior
» same signature as method in ancestor
> may not reduce visibility
> may use the original method if simply want to
add more behavior to existing
— also called patrtial overriding

» The Rectangle class
— adds data, partially overrides toString

Inheritance, Polymorphism, and Interfaces 18

The Keyword super

super is used to access something (any protected or
public field or method) from the super class that has
been overridden

Rectangle's toString makes use of the toStringin
ClosedShape my calling super.toString ()

without the super calling toString would result in
infinite recursive calls

Java does not allow nested supers
super.super.toString ()

results in a syntax error even though technically this
refers to a valid method, Object's toString

Rectangle partially overrides ClosedShape's toString

Inheritance, Polymorphism, and Interfaces 19

What Can Rectangles Do?

Rectangle rl = new Rectangle();

Rectangle r2 = new Rectangle (10, 15);
Rectangle r3 = new Rectangle (10, 15, 2, 3);
System.out.println(rl);
System.out.println(r2);
System.out.println(r3);

int a = rl.getX() + rl.getY();

ClosedShape s = new Rectangle (5, 10, 3, 4);
System.out.println(s.toString());

a t= s.getX();

ClosedShape[] sList = new ClosedShapel[3];

sList[0] = new ClosedShape (5, 10);

sList[l] = new Rectangle (10, 25, 10, 7);

sList[2] = r2;

for(int i = 0; i < sList.length; i++)
System.out.println(sList[i].toString())

Inheritance, Polymorphism, and Interfaces 20

Abstract Classes and Methods

» An abstract class is used to define a class to
gather together behaviors but:

— an object of that type never exists and can never
be created or instantiated.

— a Shape or a Mammal

> a method may be declared abstract in its
header, after visibility modifier
— no body to the method

— all derived classes must eventually implement
this method (or they must be abstract as well)

—any class with 1 or more abstract methods must
be an abstract class

Inheritance, Polymorphism, and Interfaces 21

An Abstract ClosedShape Class

public abstract class ClosedShape
{ private int iMyX;
private int iMyY;

public ClosedShape ()
{ this(0,0);
}

public ClosedShape (int x, int vy)
{ iMyX X7

iMyY = y;
}

public String toString()
{ return "x: " + iMyX + " y: " + iMyY;
}

public abstract int getArea();

public int getX(){ return iMyX; }
public int getY () { return iMyY; }

Inheritance, Polymorphism, and Interfaces

22

Classes that Inherit from ClosedShape

» Rectangle inherits from ClosedShape
» What if Rectangle is unchanged

» Problem: If | have a Rectangle object what happens
when | call:

Rectangle r = new Rectangle (10, 5, 0, 0);
System.out.println(r.getArea();)

» Undefined behavior = BAD
» As is the Rectangle class would not compile

» If a class inherits from an abstract class that has
abstract methods those methods must be defined in
the child or the child must be abstract as well

Inheritance, Polymorphism, and Interfaces 23

Implementing getArea()

public class Rectangle extends ClosedShape

{

}

private int iMyWidth;
private int iMyHeight;

public int getArea()
{ return iMyWidth * iMyHeight; }

// other methods not shown

public class Square extends Rectangle

{

public Square()
{1}

public Square (int side)
{ super(side, side); 1}

public Square (int side, int x, int vy)
{ super(side, side, x, y); }

Inheritance, Polymorphism, and Interfaces

24

A Circle Class

public class Circle extends ClosedShape
{ int iMyRadius;

public Circle()
{ this(1); }

public Circle(int radius)

{ iMyRadius = radius;

}
public Circle(int radius, int x, int vy)

{ super (x,vy) s
iMyRadius = radius;
}

public int getAreal()
{ return Math.PI * iMyRadius * iMyRadius; }

public String toString()

Inheritance, Polymorphism, and Interfaces 25

{ return super.toString() + " radius: " + iMyRadius;

}

Polymorphism in Action

public class UsesShapes
{ public static void go()

{ ClosedShape[] sList = new ClosedShape[1l0];
int a, b, ¢, d;

for(int i = 0; i < 10; i++)

{ a = (int) (Math.random() * 100);

b = (int) (Math.random() * 100);
c = (int) (Math.random() * 100);
d = (int) (Math.random() * 100);
x = (int) (Math.random() * 3);
if(x == 0)

sList[i] = new Rectangle(a,b,c,d);
else if(x == 1)

sList[i] = new Square(a,c,d);
else

sList[i] = new Circle(a,c,d);

int total =0;

for(int 1 = 0; 1 < 10; i++4)

{ total += sList[i].getAreal();
System.out.println(sList[i])

}

}

Inheritance, Polymorphism, and Interfaces 26

The Kicker

» We want to expand our pallet of shapes

> Triangle could also be a sub class of
ClosedShape.
— it would inherit from ClosedShape

public int getArea()
{ return 0.5 * iMyWidth * iMyHeight;}

» What changes do we have to make to the
code on the previous slide for totaling area
so it will now handle Triangles as well?

> Power.

Inheritance, Polymorphism, and Interfaces 27

Object Variables

Rectangle r = new Rectangle (10, 20);
ClosedShape s = r;

System.out.println ("Area is " + s.getAreal());

> The above code works if Rectangle extends
ClosedShape

> An object variable may point to an object of its
base type or a descendant in the inheritance chain

— The is-a relationship is met. A Rectangle object is-a
shape so s may point to it

» This is a form of polymorphism and is used
extensively in the Java Collection classes
— Vector, ArrayList are lists of Objects

Inheritance, Polymorphism, and Interfaces 28

Type Compatibility
Rectangle r = new Rectangle (5, 10);
ClosedShape s = r;
s.changeWidth (20); // syntax error

» polymorphism allows s to point at a Rect object but
there are limitations

> The above code will not compile

> Statically, s is declared to be a shape

— no changeWidth method in Shape class
— must cast s to a Rectangle

Rectangle r = new Rectangle (5, 10);
Shape s = r;

((Rectangle) s) .changeWidth (20); //Okay

Inheritance, Polymorphism, and Interfaces 29

Problems with Casting

» The following code compiles but a Class Cast
Exception is thrown at runtime

Rectangle r = new Rectangle (5, 10);
Circle ¢ = new Circle(5);

Shape s = c;

((Rectangle) s) .changeWidth (4) ;

» Casting must be done carefully and correctly

» If unsure of what type object will be the use the
instanceof operator or the getClass ()
method

expression instanceof ClassName

Inheritance, Polymorphism, and Interfaces 30

Multiple Inheritance

> Inheritance models the "is-a" relationship
between real world things

> one of the benefits is code reuse,
completing programs faster, with less effort

> in the real world a thing can have "is-a"
relationships with several other things

— a Graduate Teaching Assistant is-a Graduate
Student. Graduate Teaching Assistant is-a
Faculty Member

— a Student is-a Person. a Student is a
SortableObject

Inheritance, Polymorphism, and Interfaces 31

Interfaces
» A Java interface is a "pure abstract
class".
— Design only, no implementation.

> Interfaces are declared in a way similar to
classes but
— consist only of public abstract methods
— public final static fields

> A Java class extends exactly one other

class, but can implement as many interfaces
as desired

Inheritance, Polymorphism, and Interfaces 32

Common Interfaces in Java

> One of the most interesting interfaces is:
Comparable

Implementing an Interface

package java.lang

public interface Comparable

{

public int compareTo(Object other);

}

public class Card implements Comparable

{

public int compareTo (Object otherObject)
(Card) otherObject;
iMySuit - other.iMySuit;

{

}

Card other
int result =
if (result ==

result

)

iMyValue - other.iMyValue;

// other methods not shown

> compareTo should return an int <0 if the calling object is
less than the parameter, 0O if they are equal, and an int >0 if
the calling object is greater than the parameter

Inheritance, Polymorphism, and Interfaces 33

» unlike the equals method no steps to prevent a miscast
» If a class declares that it will implement an interface, but

does not provide an implementation of all the methods in
that interface, that class must be abstract

Inheritance, Polymorphism, and Interfaces 34

