
Inheritance, Polymorphism, and Interfaces 1

Advanced Placement
Computer Science

Inheritance and Polymorphism
What’s past is prologue.

Don’t write it twice — write it once and reuse it.

Bekki George
James E. Taylor HS, Katy

Inheritance, Polymorphism, and Interfaces 2

Main Tenants of OO Programming
Encapsulation
– abstraction, information hiding, responsibility

driven programming
Inheritance
– code reuse, specialization "New code using old

code."
Polymorphism
– do X for a collection of various types of objects,

where X is different depending on the type of
object

– "Old code using new code."

Inheritance, Polymorphism, and Interfaces 3

Explanation of Inheritance
1 of the fundamental principles of OOP
– allows code reuse

Models the IS-A relationship
– a student is-a person
– an undergraduate is-a student
– a rectangle is-a shape
– a rook is-a piece

Contrast with the Has-A relationship (or uses a)
– a student has-a name
– a rook has-a position
– a Stack uses a List

Is-a relationships indicate inheritance, has-a
relationships indicate composition (fields)

Inheritance, Polymorphism, and Interfaces 4

Nomenclature of Inheritance
The extends keyword is used to specify which
preexisting class a new class is inheriting from
public class Student extends Person

Person is said to be
– the parent class of Student
– the super class of Student
– the base class of Student
– an ancestor of Student

Student is said to be
– a child class of Person
– a sub class of Person
– a derived class of Person
– a descendant of Person

Inheritance, Polymorphism, and Interfaces 5

The Mechanics of Inheritance
Java is a pure object oriented language
all code is part of some class
all classes, except one, must inherit from
exactly one other class
The Object class is the cosmic super class

– The Object class does not inherit from any other class
– The Object class has several important methods:

toString, equals, hashCode, clone, getClass
implications:

– all classes are descendants of Object
– all classes, and thus all objects, have a toString,

equals, hashCode, clone, and getClass method
• toString, equals, hashCode, clone normally overridden

Inheritance, Polymorphism, and Interfaces 6

Inheriting from a Class
If a class header does not include the
extends clause the class extends the
Object class by default
public class Card
– Object is an ancestor to all classes
– it is the only class that does not extend some

other class
A class extends exactly one other class
– extending two or more classes is multiple

inheritance. Java does not support this directly,
rather it uses Interfaces.

Inheritance, Polymorphism, and Interfaces 7

Implications of Inheritance
The sub class gains all of the behavior (methods) and data
regarding state (instance variables) of the super class and
all ancestor classes
Sub classes can:
– add new fields
– add new methods
– override existing methods (change behavior)

Sub classes may not
– remove fields
– remove methods

Note, even though an object may have instance variables
from its parent they may not be accessible by the code of
the child class if the fields are private

Inheritance, Polymorphism, and Interfaces 8

The Real Picture

Fields from String class

Instance Variables
declared in String

Fields from Object class
Instance variables
declared in Object

Behaviors (methods) from String class
and Object class.

A String
object

Inheritance, Polymorphism, and Interfaces 9

Access Modifiers and
Inheritance

public
– accessible to all classes

private
– accessible only within that class. Hidden from all sub

classes.
protected
– accessible by classes within the same package and all

descendant classes
Instance variables should be private
protected methods are used to allow descendant
classes to modify instance variables in ways other
classes can't

Inheritance, Polymorphism, and Interfaces 10

Instance Variables - Private or Protected
Why is it good design to make the instance
variables of an object private instead of protected?
protected also allows classes in the same package
to access the data
– a class in a package does not necessarily inherit from

other classes in the same package
What if when the data changes something else
must be done? How would the descendant classes
know to do the required changes?
– Excellent example in the MBCS

Inheritance, Polymorphism, and Interfaces 11

MBCS Example
public class Fish
{ private Location myLoc;

// Why private?
// What if subclasses override move() and need to change
// the Location? Don't subclasses need access to it?
private Environment theEnv;
// If a Fish changes its location theEnv must be updated

protected void changeLocation(Location newLoc)
{ // Change location and notify Environment

Location oldLoc = location();
myLoc = newLoc;
environment().recordMove(this, oldLoc);

// object is again at location myLoc in environment
}

}

Making myLoc private and forcing sub classes to call
changeLocation to alter the location of a fish guarantees
the environment is correctly updated with the now location.

Inheritance, Polymorphism, and Interfaces 12

Shape Classes
Declare a class called ClosedShape
– assume all shapes have x and y coordinates
– override Object's version of toString

Possible sub classes of ClosedShape
– Rectangle
– Circle
– Ellipse
– Square
Possible hierarchy
ClosedShape -> Rectangle -> Square

Inheritance, Polymorphism, and Interfaces 13

A ClosedShape class
public class ClosedShape
{ private int iMyX;

private int tMyY;

public ClosedShape()
{ this(0,0); }

public ClosedShape (int x, int y)
{ iMyX = x;

iMyY = y;
}

public String toString()
{ return "x: " + iMyX + " y: " + iMyY; }

public int getX(){ return iMyX; }
public int getY(){ return iMyY; }

}
// Other methods not shown

Inheritance, Polymorphism, and Interfaces 14

Constructors
Constructors handle initialization of objects
When creating an object with one or more ancestors (every
type except Object) a chain of constructor calls takes place
The reserved word super may be used in a constructor to
specify which of the parent's constructors to call
– must be first line of constructor

if no parent constructor is explicitly called the default, 0
parameter constructor of the parent is called
– if no default constructor exists a syntax error results

If a parent constructor is called another constructor in the
same class may no be called
– no super();this(); allowed. One or the other, not both
– good place for an initialization method

Inheritance, Polymorphism, and Interfaces 15

A Rectangle Constructor
public class Rectangle extends ClosedShape
{ private int iMyWidth;

private int iMyHeight;

public Rectangle(int width, int height,
int x, int y)

{ super(x,y);
// calls the 2 int constructor in
// ClosedShape
iMyWidth = width;
iMyHeight = height;

}

// other methods not shown
}

Inheritance, Polymorphism, and Interfaces 16

A Rectangle Class
public class Rectangle extends ClosedShape
{ private int iMyWidth;

private int iMyHeight;

public Rectangle()
{ this(0, 0);
}

public Rectangle(int width, int height)
{ this(width, height, 0, 0);
}

public Rectangle(int width, int height,
int x, int y)

{ super(x, y);
iMyWidth = width;
iMyHeight = height;

}

public String toString()
{ return super.toString() + " width: " + iMyWidth

+ " height: " + iMyHeight;
}

}

Inheritance, Polymorphism, and Interfaces 17

Initialization method
public class Rectangle extends ClosedShape
{ private int iMyWidth;

private int iMyHeight;

public Rectangle()
{ init(0, 0);
}

public Rectangle(int width, int height)
{ init(width, height);
}

public Rectangle(int width, int height,
int x, int y)

{ super(x, y);
init(width, height);

}

private void init(int width, int height)
{ iMyWidth = width;

iMyHeight = height;
}

Inheritance, Polymorphism, and Interfaces 18

Overriding methods
any method that is not final may be
overridden by a descendant class
– overriding is a replacement of a behavior
– overloading is the addition of a behavior
same signature as method in ancestor
may not reduce visibility
may use the original method if simply want to
add more behavior to existing
– also called partial overriding
The Rectangle class
– adds data, partially overrides toString

Inheritance, Polymorphism, and Interfaces 19

The Keyword super
super is used to access something (any protected or
public field or method) from the super class that has
been overridden
Rectangle's toString makes use of the toString in
ClosedShape my calling super.toString()
without the super calling toString would result in
infinite recursive calls
Java does not allow nested supers
super.super.toString()

results in a syntax error even though technically this
refers to a valid method, Object's toString
Rectangle partially overrides ClosedShape's toString

Inheritance, Polymorphism, and Interfaces 20

What Can Rectangles Do?
Rectangle r1 = new Rectangle();
Rectangle r2 = new Rectangle(10, 15);
Rectangle r3 = new Rectangle(10, 15, 2, 3);
System.out.println(r1);
System.out.println(r2);
System.out.println(r3);
int a = r1.getX() + r1.getY();
ClosedShape s = new Rectangle(5, 10, 3, 4);
System.out.println(s.toString());
a += s.getX();
ClosedShape[] sList = new ClosedShape[3];
sList[0] = new ClosedShape(5, 10);
sList[1] = new Rectangle(10, 25, 10, 7);
sList[2] = r2;
for(int i = 0; i < sList.length; i++)

System.out.println(sList[i].toString());

Inheritance, Polymorphism, and Interfaces 21

Abstract Classes and Methods
An abstract class is used to define a class to
gather together behaviors but:
– an object of that type never exists and can never

be created or instantiated.
– a Shape or a Mammal
a method may be declared abstract in its
header, after visibility modifier
– no body to the method
– all derived classes must eventually implement

this method (or they must be abstract as well)
– any class with 1 or more abstract methods must

be an abstract class
Inheritance, Polymorphism, and Interfaces 22

An Abstract ClosedShape Class
public abstract class ClosedShape
{ private int iMyX;

private int iMyY;

public ClosedShape()
{ this(0,0);
}

public ClosedShape (int x, int y)
{ iMyX = x;

iMyY = y;
}

public String toString()
{ return "x: " + iMyX + " y: " + iMyY;
}

public abstract int getArea();

public int getX(){ return iMyX; }
public int getY(){ return iMyY; }

}

Inheritance, Polymorphism, and Interfaces 23

Classes that Inherit from ClosedShape

Rectangle inherits from ClosedShape
What if Rectangle is unchanged
Problem: If I have a Rectangle object what happens
when I call:
Rectangle r = new Rectangle(10, 5, 0, 0);
System.out.println(r.getArea();)

Undefined behavior = BAD
As is the Rectangle class would not compile
If a class inherits from an abstract class that has
abstract methods those methods must be defined in
the child or the child must be abstract as well

Inheritance, Polymorphism, and Interfaces 24

Implementing getArea()
public class Rectangle extends ClosedShape
{ private int iMyWidth;

private int iMyHeight;

public int getArea()
{ return iMyWidth * iMyHeight; }

// other methods not shown
}

public class Square extends Rectangle
{ public Square()

{ }

public Square(int side)
{ super(side, side); }

public Square(int side, int x, int y)
{ super(side, side, x, y); }

}

Inheritance, Polymorphism, and Interfaces 25

A Circle Class
public class Circle extends ClosedShape
{ int iMyRadius;

public Circle()
{ this(1); }

public Circle(int radius)
{ iMyRadius = radius;
}

public Circle(int radius, int x, int y)
{ super(x,y);

iMyRadius = radius;
}

public int getArea()
{ return Math.PI * iMyRadius * iMyRadius; }

public String toString()
{ return super.toString() + " radius: " + iMyRadius; }

}

Inheritance, Polymorphism, and Interfaces 26

Polymorphism in Action
public class UsesShapes
{ public static void go()

{ ClosedShape[] sList = new ClosedShape[10];
int a, b, c, d;
int x;
for(int i = 0; i < 10; i++)
{ a = (int)(Math.random() * 100);

b = (int)(Math.random() * 100);
c = (int)(Math.random() * 100);
d = (int)(Math.random() * 100);
x = (int)(Math.random() * 3);
if(x == 0)

sList[i] = new Rectangle(a,b,c,d);
else if(x == 1)

sList[i] = new Square(a,c,d);
else

sList[i] = new Circle(a,c,d);
}
int total =0;
for(int i = 0; i < 10; i++)
{ total += sList[i].getArea();

System.out.println(sList[i]);
}

}
}

Inheritance, Polymorphism, and Interfaces 27

The Kicker
We want to expand our pallet of shapes
Triangle could also be a sub class of
ClosedShape.
– it would inherit from ClosedShape
public int getArea()
{ return 0.5 * iMyWidth * iMyHeight;}

What changes do we have to make to the
code on the previous slide for totaling area
so it will now handle Triangles as well?
Power.

Inheritance, Polymorphism, and Interfaces 28

Object Variables

The above code works if Rectangle extends
ClosedShape
An object variable may point to an object of its
base type or a descendant in the inheritance chain
– The is-a relationship is met. A Rectangle object is-a

shape so s may point to it
This is a form of polymorphism and is used
extensively in the Java Collection classes
– Vector, ArrayList are lists of Objects

Rectangle r = new Rectangle(10, 20);
ClosedShape s = r;
System.out.println("Area is " + s.getArea());

Inheritance, Polymorphism, and Interfaces 29

polymorphism allows s to point at a Rect object but
there are limitations
The above code will not compile
Statically, s is declared to be a shape
– no changeWidth method in Shape class
– must cast s to a Rectangle

Type Compatibility
Rectangle r = new Rectangle(5, 10);
ClosedShape s = r;
s.changeWidth(20); // syntax error

Rectangle r = new Rectangle(5, 10);
Shape s = r;
((Rectangle)s).changeWidth(20); //Okay

Inheritance, Polymorphism, and Interfaces 30

Problems with Casting
The following code compiles but a Class Cast
Exception is thrown at runtime

Casting must be done carefully and correctly
If unsure of what type object will be the use the
instanceof operator or the getClass()
method

expression instanceof ClassName

Rectangle r = new Rectangle(5, 10);
Circle c = new Circle(5);
Shape s = c;
((Rectangle)s).changeWidth(4);

Inheritance, Polymorphism, and Interfaces 31

Multiple Inheritance
Inheritance models the "is-a" relationship
between real world things
one of the benefits is code reuse,
completing programs faster, with less effort
in the real world a thing can have "is-a"
relationships with several other things
– a Graduate Teaching Assistant is-a Graduate

Student. Graduate Teaching Assistant is-a
Faculty Member

– a Student is-a Person. a Student is a
SortableObject

Inheritance, Polymorphism, and Interfaces 32

Interfaces
A Java interface is a "pure abstract
class".
– Design only, no implementation.
Interfaces are declared in a way similar to
classes but
– consist only of public abstract methods
– public final static fields
A Java class extends exactly one other
class, but can implement as many interfaces
as desired

Inheritance, Polymorphism, and Interfaces 33

Common Interfaces in Java
One of the most interesting interfaces is:
Comparable

compareTo should return an int <0 if the calling object is
less than the parameter, 0 if they are equal, and an int >0 if
the calling object is greater than the parameter

package java.lang

public interface Comparable
{

public int compareTo(Object other);
}

Inheritance, Polymorphism, and Interfaces 34

Implementing an Interface

unlike the equals method no steps to prevent a miscast
If a class declares that it will implement an interface, but
does not provide an implementation of all the methods in
that interface, that class must be abstract

public class Card implements Comparable
{

public int compareTo(Object otherObject)
{ Card other = (Card)otherObject;

int result = iMySuit - other.iMySuit;
if(result == 0)

result = iMyValue - other.iMyValue;
}
// other methods not shown

}

